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Abstract

The authors present their results concerning the thermal behaviour of two mononuclear
and two polynuclear coordination compounds of lanthanum.

INTRODUCTION

Following our research concerning the thermal behaviour of rare earth
coordination compounds [1], this paper deals with three p-aminosalicylate
and one oxalate complex compounds of lanthanum.

EXPERIMENTAL

Powders of the following compounds: [La(PAS),OH] - 2H,0, [Co(PAS)-
OH] - 2H,0, [LaCo(PAS),(OH),] - 4H,0, [LaCo(ox),0OH(H,0),] - H,O,
where PAS and ox are the p-aminosalicylate and oxalate anions, were
used. The compounds were synthesised and analysed according to methods
described elsewhere [2].

In order to obtain the heating curves, derivatographs from MOM-Buda-
pest, of Paulik—Paulik—-Erdey type with photographic recording (Q1500 D)
and computer recording (Derivatograph C) were used. The TG, DTG, T
and DTA curves were recorded in a static air atmosphere in the tempera-
ture range 20-1000 ° C at heating rates (B8) between 1.25 and 10 K min~.

The crystalline state of the powders submitted to heating was character-
ized by means of a TUR M62 X-ray diffractometer. The diffractograms
were recorded using the Ko radiation of cobalt. From the diffractometric
data the mean sizes of the crystallites were evaluated using Scherrer’s
formula [3].
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The nonisothermal kinetic parameter values were obtained using three
integral methods: those of Coats and Redfern [4], Flynn and Wall for
constant heating rate [5], and Urbanovici and Segal [6], which involves a
modified Coats—Redfern method.

For automatic processing of the data a program written in the language
Basic was used [7]. Besides the optimal values of the nonisothermal kinetic
parameters, this program regenerates, by using these values, the TG curves
in coordinates (a, T), then the experimental points are recorded in the
same coordinates.

Taking into account that the procedures applied to evaluate the non-
isothermal kinetic parameters are based on various approximations of the
temperature integral [8], the correspondence between the regenerated
(a, t) curves (¢t = temperature, °C) and the experimental points indicates
both the accuracy of the experimental measurements and the correctness
of the description of the experimental data by these approximations.

RESULTS AND DISCUSSION
The thermal decomposition of [La(PAS),OH] - 2H,0

According to the derivatographic data, with progressive heating of this
X-ray amorphous compound the following decomposition steps have been
recorded:

[La(PAS),OH] - 2H,0(s) ‘2%°S [La(PAS),0H](s) + 2H,0(g) (1)
[La(PAS),0H|(5) “2°S P(5) + P(g) + H,0() @
where P(s) is the solid product of the decomposition and P(g) is the gaseous
product of the partial degradation of PAS. Because of the lack of detailed

information concerning the structure of the intermediate solid and gaseous
products, the P, notations are preferred.

P(s) 220 py(s) + Py(g) 3)
P(s) =205 La,0,4(s) + Py(g) (4)

Table 1 lists the values of the nonisothermal kinetic parameters of
reactions (1), (2) and (3). The results for these and for the following
reactions were obtained from the data recorded at a fairly low heating rate
in order to obtain values of the nonisothermal kinetic parameters free from
heat transfer limitations.

The inspection of these results shows a satisfactory agreement among
the values of the nonisothermal kinetic parameters obtained by means of
the three applied methods.

Figure 1 shows the regenerated TG curve in (e, t) coordinates for
reaction (2), recorded using the values of the Coats—Redfern nonisother-
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Fig. 1. The regenerated (a, t) curve and the experimental points for reaction (2): (———)

regenerated curve; (o) experimental points.

mal kinetic parameters, as well as the experimental points which lie
practically on the curve, thus indicating the validity of the applied method
as well as the accuracy of the results.

The thermal decomposition of [Co(PAS)OH] - 2H,0

The derivatograms of this X-ray amorphous compound show the follow-
ing decomposition steps:

[Co(PAS)OH] - 2H,0(s) 2=2°S [Co(PAS)OH] - H,O(s) + H,O0(g)

(5)
[Co(PAS)OH] - H,0(s) 2225 Py(s) + Py(g) + H,0(g) (6)
P,(s) -0 Co;0,(s) + Py(8) (7)
C0,0,(s) 2=22°S 3Co0(s) + 0.50,(g) (8)

Only steps (5) and (6) are kinetically workable. The results are given in
Table 2.

As can be seen from Table 2, the three integral methods applied to
evaluate the nonisothermal kinetic parameters lead to results in satisfac-
tory agreement.

The regenerated TG curve obtained using the Coats—Redfern non-
isothermal kinetic parameter values, as well as the corresponding experi-
mental points, are given in Fig. 2. In this case too, the experimental points
fit well to the regenerated curve.
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The thermal decomposition of [LaCo(PAS),(OH),] - 4H,0

The heating curves of this X-ray amorphous compound show the follow-
ing decomposition steps:

[LaCo(PAS),(OH),] - 4H,0(s) 121478

[LaCo(PAS),(OH),] (s) + 4H,0(g) )
[LaCo(PAS),(OH),](s) 2225 Py(s) + Py(g) + H,0(g) (10)
Py(s) 2228 LaCoO,(s) + Py(g) (11)

The nonisothermal kinetic parameters values for reactions (9) and (10) are
listed in Table 3. From an inspection of this table it is seen that the values
of the nonisothermal kinetic parameters obtained by various methods show
satisfactory agreement.

For reaction (9), Fig. 3 shows the regenerated TG curve as well as the
experimental points.

The thermal decomposition of [LaCo(ox),(OH)(H,0),] - H,O

The X-ray diffraction data of this compound are given in Table 4.

The derivatographic data allowed us to identify the following decomposi-
tion steps which occur with progressive heating of [LaCo(ox),(OH)XH,0),]
-H,0.

[LaCo(ox),(OH)(H,0),] - H,0(s) BLS

[LaCo(ox),(OH)(H,0),](s) + H,0(g) (12)
[LaCo(ox),(OH)(H,0),] (s) =5 [LaCo(ox),(OH)](s) + 3H,0(g)  (13)
[LaCo(ox),(OH)] (s) 25

La;Co;(0x),0,5(s) + 0.5H,0(g) + 3CO(g) + CO,(g) (14)
La;Co;(0x),0, 5(s) e La,Co3(0x),(C0O,),0, 5(s) + 2CO(g) (15)
La;Coy(0x);(CO;3);,04 5(s) =5

La;Co,(C0O,),0,5(s) + 2CO(g) + 2CO,(g) (16)
La;C05(C0,),0, 5(5) 225 La,Co4(C0O,4),06 5(s) + 2C0,(2) (17)
La;Co5(C05);04.5(s) % La;C004,(s) +2CO,(g) (18)
La;Co;04,(s) 80°¢ La;Co0,0,5(s) + 0.50,(g) (19)

The results concerning the nonisothermal kinetic parameter values of
reactions (12), (13) and (18) (the reactions workable kinetically) are given in
Table 5. A satisfactory agreement among the values of the nonisothermal
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Fig. 2. The regenerated (a, t) curve and the experimental points for reaction (5); ()
regenerated curve; (©) experimental points.

kinetic parameters obtained by the three integral methods can be noticed
in this case also.

The regenerated TG curve for reaction (12) and the corresponding
experimental points are given in Fig. 4.

Examination of the results listed in Tables 1, 2, 3 and 5 shows that, with
only one exception, the values of the reaction order are fractional and

{eo 1
¥T 4
50 ~
25 1
gon 55 7y 103 ey
Fig. 3. The regenerated {«, £) curve and ﬂie experimental points for reaction {(9): ()

regenerated curve; (o) experimental points.
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Fig. 4. The regenerated (a, t) curve and the experimental points for reaction (12); (———)

regenerated curve; (o) experimental points.

higher than unity. These values could be assigned to the decomposition of
structural units consisting of more than one molecule which coexist in
variable ratios in the investigated systems.

TABLE 4

Intensity values corresponding to the X-ray diffraction lines, interplanar distances (d) and
mean crystallite size corresponding to the most intense line (!) for [LaCo(ox),(OHXH ,0),]-
H,O

Number of Intensity d(A) 1(A)
diffraction line
1 10.73 1.76 -
2 73.32 6.49 -
3 100 5.4 810
4 6.33 4.15 -
5 15 382 -
6 41 3.29 -
7 11 3.25 -
8 7 3.07 -
9 5 2.85 -
10 6 2.78 -
11 7.5 2.51 -
12 9 2.47 -
13 7 2.26 -
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CONCLUSIONS

The thermal behaviour of four coordination compounds of lanthanum
was investigated.

The values of the nonisothermal kinetic parameters for the individual
decomposition steps were determined.

The values of the nonisothermal kinetic parameters determined by three
integral methods agree satisfactorily.
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