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Abstract 

A multiordering parameter model for the relaxation behaviour of glasses around the 
glass-transition region is presented. This paper is intended as a generalization of the single 
order parameter models presented in the first part of this work. It is assumed that each 
order parameter is associated with a relaxation time of the form suggested by Narayanaswamy 
and we have adopted a continuous distribution of these relaxation times defined by a single 
Williams-Watts parameter p. Computer simulations permit predictions of the fictive 
temperature evolution of glasses, subjected to arbitrary temperature-time histories, in 
terms of material constants and kinetic parameters such as the activation energy E,, or the 
partition factor X. Furthermore, the present model adequately fits the available experimen- 
tal data obtained from DSC experiments on amorphous selenium and allows us to analyse 
memory effects (i.e. crossover experiments). 

INTRODUCTION 

In a previous paper [l] reported as the first part of this work, we have 
shown that the main features of the enthalpic relaxation around the glass 
transition can be accounted for by a simple model combining the Kovacs 
equation and the Narayanaswamy expression for a single relaxation time. 
Comparisons with DSC measurements performed on amorphous selenium 
showed good agreement. However, this one parameter theory completely 
fails to describe the memory effects [2-41 manifested as the influence of 
heat treatments on the future behaviour of the glass. Otherwise, the 
agreement with the results on a limited class of experiments was only 
qualitative. In order to introduce a distribution of relaxation times into the 
analysis, Kovacs et al. [2] adopted a series of N ordering parameters each 
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of which is associated with a specific fraction Sj of the total departure of 
the equilibrium 6, so that 

The evolution of each ai is governed by a kinetic equation 

da, 
- = - Si/~i - AC,iq 
dt 

(i= 1, . ..) N) 

where AC,i is the contribution of the ith process to the total difference 
between the heat capacity of the liquid and the glass (AC,), q is the 
heating or cooling rate (depending on the sign) and 7i is the relaxation time 
corresponding to the ith process. In the present work we have assumed a 
relaxation time which depends on both temperature and configuration [5] 
through 

T,(T,S) = 7i0 exp(xE,/kT) exp((1 -x)E,/~T~) 

where x is a partition factor (0 <X < l), E, the activation energy near the 
equilibrium, and Tf is the fictive temperature. 

The relaxation time can be handled as follows 

~i(T,a) = T&O) 
~i( T,O) ~i( T,a) 
Ti(Tr,O) Ti(T,O) 

7ir = T~(T,,O) being the ith relaxation time at a reference temperature T, in 
equilibrium; aT is a temperature-dependent shift factor at equilibrium and 
a, is the structure-dependent shift factor at constant temperature. Hence it 
is assumed that the relaxation times for the various order parameters differ 
only in the pre-exponential factor, a condition frequently designated as 
“ thermorheologically simple behaviour”. 

The set of differential equations mentioned above is called the Kovacs- 
Aklonis-Hutchinson-Ramos (KAHR) equations [2]. This set of N equa- 
tions together with the initial conditions 

Si( t) = 6i, 

for t = t, (i = 1, . . . , N) govern the time and temperature dependence of 
the system when subjected to any arbitrary thermal history. 

The aim of this paper is to assume a continuous integral representation 
of the set of KAHR equations in order to explore the consequences of a 
distribution of relaxation times and to compare the theoretical predictions 
with the calorimetric cyclic experiment on amorphous selenium reported in 
the previous paper [l]. The numerical simulations were performed by the 
iterative method proposed by Chow and Prest [6]. 
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THE FUNDAMENTAL EQUATIONS 

We have adopted the Narayanaswamy expression [5] for the relaxation 
times TV. Therefore, we write 

Tir = TiO exp(E,/K) 

a, = exp 
i 

a(T,6) = aTas 

After examining these expressions it is evident that the KAHR equations 
cannot be integrated analytically. Nevertheless, they constitute an “autono- 
mous system” [2,7] which is easily simplified. One can introduce the 
“reduced time” variable as 

dt” 

u(tJ’) = /It a[T(tN),@“)l 

du 
x =a(T,S)_’ 

In terms of u, the KAJ3R equations for the isothermal case become 

dai 

du- 
- -~ilTir 

which represent a linearized system whose integrations yield 

UWO) 
S,(U) = 6, exp - - 

i I Tir 

By summing the individual contributions we obtain the total 
from equilibrium 

N N 

departure 

N 

where gi =; 6,,/6, = AC,,/ACp satisfies the normalization condition cgi 

= 1, and #(u) = #(t,to> is the response function. 
i 

According to Chow and Prest [6], when N is large and gi very small, the 
solution of the linearized KAHR equations for the non-isothermal case 
(q # 0) is 

8:(t) = iSi eXp( -ti(t,tg)/Tiir) - AC~~q~~exp(-~(t,t~)/~~~) dt’ 
10 

(i= 1, . . . . N) 
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Therefore, by summing all the individual terms we obtain 

s(t) = &#@,t,) - ACpqj-‘4(f,t’) dt’ 
t0 

The above equation, for both isothermal (4 = 0) and non-isothermal 
(4 # 0) treatments, may be adequately written in different forms depending 
on the parameter chosen to describe the progress of the relaxation. 
Frequently it is convenient to characterize the change by the fictive 
temperature Tf at temperature T [8], which is defined by 

T,= T+6/AC, 

On inserting the above expression into the equation providing the total 
departure from equilibrium i?(t), and taking account of the simple relation- 
ship dt = dT,/q, we are left with the fundamental equation 

T,(T) = T+ (Tfo - T,&(T,T,) - I’%(T,T’) dT’ 
To 

which for the isothermal case (q = 0) adopts the simpler form 

T,(t) = Tel + (T,, - GM(tJ*) 

and where To and T, are the initial conditions. 
The integration of the above equations demands that we should propose 

a model for the response function 4. In fact, we have adopted the 
Williams-Watts expression for +(T,T’) [6,9] 

where /3 is a constant (0 < p G 1); 7. follows the Narayanaswamy form and 
may be expressed as 

i 

*K 
r. = Y ew k~ + 

(l -+a = 70raTas 
kTf 

1 

+ror being a reference relaxation time at T, in equilibrium and uT and u6 
being the corresponding shift factors. At this point our model differs from 
the model of Chow and Prest [6] in that they adopt the simpler form of 
Ritland [lo] for the relaxation time. As showed by Ngai et al. [ll] the 
characteristic relaxation time 7. is coupled with the mean value (T) by the 
relation 

(T) = (Q/p) P(l/@) 

By introducing the non-dimensional parameters 

A = (T, - T)/T, 

B = K - Tfvrr, 
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and 

C = Trq-ho, 

one can obtain, for the non-isothermal evolution, the equation 

B(A) =A - (A, -&)~(&A) + jAo&4’,A) dA’ 
A 

with 

and 

+LB) = a,(A)@) 

However, for the isothermal response we have 

with T,, = TUTU=. 
Because of the strong dependence of the relaxation times upon the 

structure and temperature we must pay special attention to the stability of 
the solutions. In order to solve the integral equation we have adopted the 
iterative method proposed by Chow and Prest [6] and Carnahan [12] where 
all integrations are evaluated by a double-precision 32-point Gaussian 
quadrature. 

EFFECT OF THE ADJUSTABLE PARAMETERS ON THE C, VERSUS T DEPEN- 
DENCE 

The theoretical model exposed above allows us to evaluate the T,(T) 
dependence on the basis of four adjustable parameters, namely (i) the 
partition factor x, (ii) the activation energy E,, (iii) the relaxation time of 
the Williams-Watts law at a reference temperature T,-,~, and (iv) the 
fractional exponential decay parameter, p, of the Williams-Watts law. 

In order to compare the numerical calculations with the experimental 
results we have investigated the effect of each adjustable parameter on the 
C,(T) dependence during the heating stage of the cyclic experiment 
described in ref. 1. The conversion of the T,(T) dependence into the 
description (the usual in calorimetric experiments) is straightforward 

C,(T) 

C,(T) = Cpg + AC,, dT,/dT 

where C,, is the glassy heat capacity. 
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Fig. 1. Temperature dependence of the heat capacity C, in the glass transition range. The 
simulated experiments show the effect of the partition parameter x on the C,(T) curve. 

Our numerical calculations attempt to simulate the behaviour of amor- 
phous selenium around the glass transition temperature Tg. We have 
reported in Table 1 of the first paper [l] the main material constants of this 
amorphous solid. Unless otherwise specified we adopt the following set of 
initial values for the adjustable parameters: x = 0.7; E, = 2.7 eV at-‘; 
7ar = 4.3 x lop4 s; and #3 = 0.4. 

Figure 1 illustrates the changes produced in the heat capacity when the 
partition parameter x is varied about its standard initial value. Sharper 
peaks are observed for smaller values of X. Nevertheless, the position of 
the peak is unaffected. Similar results were obtained from the one-parame- 
ter model in ref. 1. Figure 2 displays the effect of the activation energy: as 
the values of E, are increased a significant shift of the CP peak towards 
higher temperatures is observed. Moreover, the C, peak becomes slightly 
narrower and the peak height increases. Figure 3 demonstrates the effect 
of 7 Or: as this parameter increases the CP peak occurs at higher tempera- 
tures but its shape remains very nearly unaffected. Finally, Fig. 4 shows the 
effect of the non-dimensional parameter @ the C, peak becomes sharper 
and occurs at lower temperatures as p increases. 

In practice we perform an iterative sequence of steps in order to 
determine the adequate parameters of the model fitting an experimental 
relaxation maximum: (i) x, E, and 7ar remain constant while we change p 
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Fig. 2. Heat capacity C,, versus temperature in the region of Ts. The simulated experiments 
show the effect of the activation energy E, on the C,,(T) curve. 
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Fig. 3. Temperature dependence of the heat capacity C,, in the glass transition range. The 
simulated experiments show the effect of T,,~ on the C,(T) curve. 
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Fig. 4. Heat capacity C, versus temperature in the region of 
show the effect of the non-dimensional parameter /3 on the 

T,. The simulated 
C,(T) curve. 

experiments 

to adjust the shape of the peak; (ii) then we change E;g and 7ar to adjust 
the position of the maximum (in fact these parameters do not appreciably 
affect the shape of the peak); (iii) after that we change the partition 
parameter x to adjust the height of the peak; and finally (iv) we return to 
(i) until convergence is ensured. 

It is convenient to stress the connection of /3 with its associated distribu- 
tion of relaxation times G(T) 

4(u) = exp( -(Ur,,)‘) = LWG(r)(exp( -VT)) d(ln r) 

At first thought the G(T) distribution could be obtained by the Laplace 
inversion of exp( - up), where u = u/T~~. Nevertheless, this task is far from 
a trivial problem. According to Pollard [13] G(T) may be obtained as 

G(s) = (l/rr)kmexp(-z)(exp( -(zs)’ cos P/?)) sin((zs)’ sin ap) dz 

where s = 7/rOr is a non-dimensional variable. This integral may be evalu- 
ated by a Gauss-Laguerre quadrature. Figure 5 shows the calculated G(s) 
distribution for different values of p. It is evident that for larger p the 
dist~bution becomes narrower approaching a single relaxation time. An 
alternative method of obtaining G(s) is due to Cost [14] which considers 
the solution of a Fredholm integral equation of the first kind by numerical 
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Fig. 5. Distribution of relaxation times for different values of the parameter p of the 
Williams-Watts law. 

computations. His method involves unfolding the integral equation using 
non-linear regression least-squares. 

RESULTS AND DISCUSSION 

Theoretical simulations of the cyclic experiment reported in ref. 1 
(cooling from equilibrium + ageing + reheating) based on the above equa- 
tions will be presented and compared with a cyclic DSC experiment on 
amorphous selenium In Figs. 6 and 7 the calculations were based on the 
following input parameters: T, = 350 K, 70r = 4.3 X 10e4 s, x = 0.75, p = 
0.5, E, = 2.7 eV at-‘. Both Figs. 6 and 7 depict the T,(T) representation 
for several cooling rate/heating rate ratios. Some relevant differences may 
be found with respect to the same curves evaluated by the simpler models 
previously presented (figs. 5, 6, 11 and 12 of ref. 1): the fundamental aspect 
is the widening of the region where the glass transition takes place. This 
may be explained by considering that the slower processes (those with 
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Fig. 6. Fictive temperature versus temperature for several cooling 
Computer simulations of rapid-rapid and slow-slow processes. 

rate/heating rate ratios. 

larger TJ are prematurely frozen, during the cooling step, involving a fast 
departure from the equilibrium Tf = T line. The opposite effect occurs at 
the lower threshold of Tg where the faster processes still persist and they 

330-- 

320- - 

310” - 

/ 
300. 
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I 0, T(K3 

290 300 310 320 330 340 

Fig. 7. Fictive temperature versus temperature for several cooling 
Computer simulations of rapid-slow and siow-rapid processes. 

rate/heating rate ratios. 
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Fig. 9. p versus x regions of “correct” and “incorrect” shift of the temperature at the 
maximum of the relaxation peak when annealing time increases. Prediction of the model for 
isothermal holding at the ageing temperature TV = 296 K. 

are the last to be quenched. Another relevant feature is the change of 
curvature at the beginning of the heating line; this behaviour indicates a 
vigorous initial approach towards the equilibrium which is gradually weaker 
as we approach it. 

Figure 8 (a), (b) illustrates the influence of the isothermal holding at the 
ageing temperature on the C,(T) curve. In the first part of this work [l] 
special attention was devoted to analysing the consequences of the time of 
isothermal holding during a cyclic experiment on the shift of the relaxation 
peak. From the single relaxation time model T = T(T,S) already considered, 
the real importance of the x parameter on the direction ,of the displace- 
ment was evident. Moreover, the universally observed trend indicates that 
the temperature of the maximum increases as 6 decreases (with the 
progress of relaxation) although a reverse effect was reported for B,O, [15] 
and more recently for the glassy alloy GeSe,-GeTe-Sb,Te, [16]. Our 
results reveal a correct evolution in Fig. 8(a) with x = 0.4 and a reverse one 
for x = 0.8 (Fig. 8(b)). In fact, Fig. 9 displays a j? versus x chart where the 
boundary has been sketched between the “correct” and “incorrect” regions 
(e.g. for p = 0.5 a value x < 0.6 is required for the correct shift, thus 
suggesting a pronounced non-linear behaviour). For /3 = 1 we go back over 
the single relaxation time model T = 7(T,S) for which we confirm the 
x = 0.8 limit. 
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Fig. 10. Heat capacity C,, versus temperature in the region of Tg for an annealing time of 
115 h at TV = 279 K: (- - -_) experimental result for amorphous selenium; (- 1 
computer simulation. 

Finally, we show in Fig. 10 the best simulation obtained for the above- 
mentioned cyclic experiment (figs. 10 and 15 in ref. 1). The schedule of this 
experiment included 115 h of isothermal holding at the ageing temperature 
TV = 279 K. A good agreement may be observed between model predictions 
and experiment which, in any case, is far better than that obtained for 
single relaxation time models. The refined parameters obtained from the 
fit were 70r = 8.1 X 10m4 s, E, = 2.67 eV at-‘, x = 0.65 and p = 0.7. Subse- 
quent attempts to improve the fit (e.g. to narrow the width of the peak) by 
varying the model parameters compromise the quality of the fit and were 
unsuccessful. After examining these results we emphasize the following 
points. 

(i) The activation energy (E, = 2.67 eV at-‘) remains much the same 
just as for the single relation time models T = T(T) and T = T(T,~). In fact, 
this kinetic parameter is closely bound up with the observed T,, as shown 
in ref. 1. 

(ii) The model is satisfactory for describing the kinetics of the phenom- 
ena related to the glass transition, at least insofar as the Narayanaswamy 
form for T is consistent with the experimental viscosity of the system. 

(iii) Since we are considering a distribution of relaxation times, for the 
theoretical viewpoint the model can account for memory effects. This last 
point is largely discussed in the next section. 
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MEMORY EFFECTS 

Figure 11 shows the schedule of a crossover experiment involving two 
consecutive T-jumps of opposite sign. It has been shown [2] that for 
complex thermal treatments including y1 consecutive T-jumps, the amount 
of disequilibrium after the elapsed reduced time u is 

6(u) = -AC, i AQ#z(u - uj_J 
j=l 

Uj being the reduced time at the end of the j isotherm. 
Then, for the crossover experiment we have 

S(u > UJ,) = - AC,((Tr - Tc&+) + (G - TM@ -%)) 

and adopting the Tf representation besides the Williams-Watts form for 
the d(u) response function, we obtain 

Tf( u 2 u,,T,) 

- To) exp( -tWor)“) + (T2 - Tl) em 

From the above relationship one can infer the reduced time ui of 
isothermal holding at Tl so that an instantaneous T-jump allows us to 
reach T2 within an initial equilibrium state 

Ul = Tar 

Figure 12 shows the simulation of several crossover experiments, similar 
to those represented in Fig. 11. The intermediate tempera~re T,, in the 

Fig. 11. Schematic diagram of enthalpy versus temperature showing a crossover experiment 
involving two consecutive T-jumps of opposite sign. 
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Fig. 12. Fictive temperature Tf versus log(u - u,) in crossover experiments. Simulations for 
several values of the intermediate temperature TI. 

above experiments, was scanned from 290 to 314 K. The parameters of the 
simulation were TV = 4.3 x lop4 s, j3 = 0.4, T, = 340 K and T2 = 314 K. 
From the curves in Fig. 12 we can observe that the system departs from its 
apparent equilibrium CT, = T,), passes through a maximum in T,, which 
increases in magnitude and occurs at shorter times (U - ul) as Tl de- 
creases, and then approaches true equilibrium (in fact, 4(m) = 0, then we 
find again Tf = T2). The departure from equilibrium is a consequence of 
the contribution of all the rapid processes until the contribution of the slow 
processes compensates this departure and restores the equilibrium. 

Furthermore, at long times (u s=- ui) we have 4(u) = +(u - u,); thus 

T,(u z+ +Tz) = Tz - (T, - T,)+(u) 
and this explains why all the isotherms asymptotically approach that 
obtained by quenching the sample directly from T,, to T2 (Tl = T2 = 314 
IQ. 

The influence of p on the evolution of Tf is shown in Fig. 13 for the 
following parameters. As p increases, involving a narrower distribution of 
relaxation times, the crossover maximum becomes shallow and vanishes for 
p = 1. In fact, for p = 1 we have 

To - TI 
d+ - ‘1) = d+d T2 _ T 

1 
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Fig. 13. Fictive temperature Tf versus log(u - ul) in crossover experiments. Simulations for 
several values of the non-dimensional parameter p. 

and, consequently, Tf = T2 = constant. Therefore, for a single relaxation 
time, the system remains in equilibrium at temperature T2 and the crossover 
effect is not observed. 

CONCLUSIONS 

Our previous work describing the relaxation in glasses (particularly in 
amorphous selenium) by means of a single relaxation time, has been 
generalized by allowing for a distribution of relaxation times. We have 
developed a phenomenological approach of increasing complexity in terms 
of kinetic parameters such as the activation energy E, and the partition 
parameter x both included in the Narayanaswamy expression for the 
relaxation time. In addition, the general T,(T) solution is expressed in 
terms of a distribution of relaxation times characterized by the Williams- 
Watts parameter p. Moreover, the existence of memory effects requires a 
distribution of order parameters describing the state of the system. It may 
well be that order parameters do not have their counterparts in physical 
reality as underlying processes but rather should be a consequence of a 
relaxation which is inherently non-exponential. In any case, the relevant 
matter is that evolution of the order parameters towards equilibrium is 
kinetically impeded. Comparison between the prediction of this model and 
a well-known cyclic experiment on enthalpic relaxation was made. The 
obtained activation energy was very close to that obtained by means of 
single relaxation time models. Nevertheless, the quality of the fit is far 
superior for the present model. Furthermore, this study improves our 
understanding that the relaxation is strongly influenced by the non-equi- 
librium structural dependent part of the relaxation time. Finally, and as 
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pointed out in our previous work, the activation energy obtained from the 
simulations supports the view that the breaking and reconstruction of 
trigonal chains plays the dominant role in the relaxation of amorphous 
selenium. 
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