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Theory of a heat conduction calorimeter for scanning 
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Abstract 

The theory of a heat conduction calorimeter for quasi-isothermal operation is extended 
to that for scanning operation. The deconvolution method developed, based on heat 
conduction calorimetry during quasi-isothermal operation and used to determine the rate of 
energy change due to chemical or physical change of a sample, can be applied to the kinetic 
analysis of thermal data by calorimetry during scanning operation. It also serves to interpret 
thermal data from DTA and heat-flow DSC experiments 

INTRODUCTION 

Conventional heat conduction calorimeters are used at the constant 
temperature of the surroundings. Recently many types of calorimeters have 
been designed to operate with scanning operation and are used with the 
surroundings temperature being changed in a programmed manner with 
respect to time [l]. It is therefore desirable to extend the theory of the heat 
conduction calorimeter [2,3] to that for scanning. The heat conduction 
calorimeter and heat-flow DSC measure the temperature differences be- 
tween the outside surface of a sample holder and the inner surface of the 
surroundings. Both are based on the same principle [4], but their theories 
are developed independently [3,5]. Thus, whether the extended theory of 
the heat conduction calorimeter is applicable to the data obtained by 
heat-flow DSC experiments is a point of some interest. 

MODEL AND BOUNDARY INITIAL VALUE PROBLEM 

A model of the heat conduction calorimeter is shown schematically in 
Fig. 1. It consists of three concentric and symmetrical domains. D, is the 
surroundings, having a temperature TB that is programmed controlled; D, 
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is the heat conducting domain and D, is the reaction domain. S, is the 
internal surface of D, and S, is the external surface of D,. The heat 
energy flows to or from reaction domain D, through heat conducting 
domain D,. n, and n2 are unit vectors on surfaces S, and S, respectively, 
and they are directed toward the interior of D,. 

The assumptions of the model are as follows. 
(a) Thermal physical properties such as heat capacity C, specific heat 

capacity c, thermal conductivity A, thermal diffusivity K and density p of 
the domains are constant over the temperature range of scanning and 
during the thermal reactions. 

(b) Heat transfer takes place by solid conduction, and other mechanisms 
such as convection and radiation can be neglected. 

(c) The temperature and concentration of the reactant in D, are uni- 
form. 

(d) Temperature gradients (U/&Z,),~ and (aT/&,)s, are uniform over 
surfaces S, and S, respectively, where a/&z denotes differentiation in the 
direction normal to the surface and toward the interior of D,, and T = 
T(r, t) the temperature at a point represented by position vector r at time 
t. 

Application of the first law of thermodynamics to D, under constant 
pressure gives 

dH, dQ dW 

-=dt+dt dt (1) 

where H2 is the enthalpy of D,, and Q and W are the heat energy and 
work received by D,, respectively. Based on assumption (c) and the 
constant pressure under which the thermal reaction occurs in D,, the 
thermodynamic state of D, can be determined by two variables, the 
temperature T and the extent of reaction t. We thus have H, = H&t, T). 
It then follows that 

d H* aH, dt aH, dT 
-=-- -- 

dt at dt 
+ 

aT dt 

dT 
= u(t) + C,x 

where 

aH, d5 
u(t) = - - 

a[ dt 

is the rate of reaction in J s-l and 

aH2 
c,= - 

aT 

(2) 

(3) 

(4) 
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Fig. 1. Model of the heat conduction calorimeter. Da, surroundings; D,, heat conducting 
domain; D,, reaction domain; S, and S,, boundary surfaces between the domains; n1 and 
n2, unit vectors on surfaces S, and S,, respectively, directed towards the interior of D,. 

is the heat capacity of D, in J K-‘. 

is the rate of heat flow from or to D, through surface S, in J s-l and A, is 
the surface area of S,. 

dW 
dt =Po +p(t> (6) 

is the power produced at D,, where p. is the time-independent part 
caused by electrical current in the resistance thermometer and by mechani- 
cal stirring, and p(t) is the transient time-dependent part due to calibra- 
tion or compensation. Therefore we obtain the following equation at D, 
and S, considering eqns. (2), (5) and (6) 

dT 

At D,, D, and S,, we have similarly 

dH, dH2 

dt +dt= 

and 

dH, 
lIl 

3T 
-= 

dt Dl 
PlCl ZdT 

(8) 

(9) 

where HI is the enthalpy of D,, A, is the surface area of S,, pr is the 
density of D,, c1 is the specific heat capacity of D, and dr is the volume 
element. From eqns. (21, (8) and (9) it follows that 
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From assumption (b), we have at D, 

aT 
K,V~T = z (11) 

(12) 
At D, and S, we set 

TB = T,,+at 

where (Y is the rate of scanning. 
When t 5 0, we set the initial conditions 

T(r, t) = TB = To 

P(t) =Po = 0 

dH,/dt = dH,/dt = 0 

(13) 

In the following, solution will be obtained for the boundary initial value 
problems (7) and (lo)-(13). 

DIVISION OF VARIABLE T(r, t) 

The following division of T(r, t> reduces the above boundary initial 
value problem to one that is simpler [6]. 

T(r, t) = TB +x(r) +y(r, t) +t(r, t) (14) 

The divided variables are defined so as to satisfy the conditions 

x (r ) satisfies 

+PO 

Klv2X(r) = Cy rED1 

and 

x(r) = 0 r E D,, S, 

y(r, t) satisfies 

(15) 

(16) 

(17) 

(18) 

(20) 

(21) K1v2Y(~, t) = aY(C t)/at, rED1 



Y(C q = 0 r E D,, S, 
and 

Y(C f) = -x(r) ts0 

z(r, t) satisfies 

u(t) + c*(g),, = w2(E)s, +m 

u(t) + c*( qD* + ///,,PICl( ;) cl7 = -44(yg),, +p(t) 

K1v2Z(t, t) = a.+, t)/at rED1 

z(r, t) = 0, r E D,, S, 

and 

z(r, t) = u(t) =p(t) = 0 tso 

PROPERTIES OF x(r), y(r, t) AND z(r, t) 
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(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

From conditions (15)~(281, the following properties of x(r), y(r, t) and 
t(r, t) are derived. 

Application of Green’s theorem in symmetrical form [7] to D, enclosed 
by surfaces S, and S, gives 

(29) 

In the above equation, 4 = 4(t) is defined as 

V’4(r) = 0, ED1 (30) 

and is equal at each of surfaces S, and S, respectively. For example, 
4 = l/r is for a spherical concentric model of D,, D, and D,, and 
4 = In r for a cylindrical model. Considering expressions (17) and (301, the 
left hand side of eqn. (29) becomes 

From (15) and (16), we have 
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From (18), (32) and (33), the right-hand side of eqn. (29) becomes 

where the subscripts 1 and 2 denote the values of x and A at surfaces S, 
and S,, respectively. Thus 

Kl= VW, = W,/C, (35) 

where VI is the volume of D,. From eqns. (29), (31), (34) and (35) we get 

(36) 

where x2 is the baseline displacement from the zero line on a (T - Tn) vs. t 
curve. Expression (36) shows the displacement to be linear with respect to 
the rate of scanning cy and heat capacity C,. Based on the above, the heat 
capacity of the reaction domain can be determined. 

The boundary initial conditions of y(r, t), expressions (19)-(23), show 
that y(r, t) is the transient temperature of D, + D, surrounded by a 
thermal bath of zero temperature. The second law of thermodynamics thus 
indicates temperature y(r, t) to approach zero as t increases 

lim y(r, t) = 0 (37) t-m 

The boundary initial conditions of z(t, t), (24)-(28), indicate changes in 
temperature of the heat conduction calorimeter for quasi-isothermal oper- 
ation [2]. The results of the theory of the calorimeter also hold. Accordingly 

z(r, t) = - @?)d~9 t - 4 dq 

= - ;)+&(r, t - rl) dv 
c 

AH, = kmo(t) dt = - f(fcm, imz(r, t) dt 
, 

(38) 

(39) 
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Fig. 2. The behavior of temperature of the reaction domain, Z’(r, t) = TB + x(r)+ y(r, t)+ 
z(r, t). TB is the temperature of the surroundings which changes linearly with time. x(r) 
represents baseline height from the zero line. y(r, t) is the transient part of temperature in 
the initial stage of scanning. z(t, t) is the part due to chemical or physical change of the 
reaction domain. 

where g(r, t) is z(r, t) for impulse power p(t) = 8(t) and f(r, t> is that for 
step power. 

P(f) =pc for t>O 

= 0 for t < 0 (41) 

AH, is the enthalpy change due to chemical or physical change in the 
reaction domain. 

The behavior of T(r, t) and its components Tn(t), x(r), y(r, t) and 
z(r, t) are shown schematically in Figs. 2 and 3. 

Equations (38) and (40) show that the rate of enthalpy change u(t) 
during scanning at a uniform rate is obtainable by the deconvolution 

T-T, 

Fig. 3. Behavior of T(r, t)- TB. The curve represents a thermogram as usually observed 
during scanning for the heat conduction calorimeter. 
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method developed in 
tion calorimeter [2,3]. 

Nearly all methods 

the quasi-isothermal operation of the heat conduc- 

for kinetic study by DTA or DSC are based on the 
assumption that the rate of reaction follows the single equation 

aH dl aH 
u(t) = - - = -_A eeEiRT(l - 6)” 

i&J dt a[ 

throughout the scanning period, where A is the frequency factor, E is the 
activation energy and n is the order of the reaction [8]. Although this 
equation is considered inadequate by many authors for not being applica- 
ble to solid-state reactions [9,10], E and n by this equation are determined 
in many cases by DTA and DSC. The following two-step analysis of 
thermal data is better than the above methods used in kinetic studies by 
DTA and DSC. The first step is to obtain the rate of enthalpy change v(t) 

by the deconvolution analysis of thermal data [ll]. The second step is 
determination of the most reasonable reaction mechanism which fits the 
u(t) data. 

Equation (39) relates peak area /rz(r, t) dt in the (Tn - T) vs. t curve 
to enthalpy change AH, through a proportionality constant -p,/f(r, 03) 
and is the same as that generally used for determining the heat of reaction. 

However, eqns. (38) and (39) are basically approximate relationships, 
since they assume constant thermal physical properties, uniform tempera- 
ture, uniform concentration of the reactant and so on. The application of 
these equations is thus confined to a short range of scanning temperature 
and to small changes in the thermal properties of the reactant. 
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