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Abstract 

Main features of building non-isothermal kinetic models are discussed. The possibilities 
of evaluation of kinetic and temperature terms are described. Statistical methods for 
parameter estimation 
presented. 

under more realistic assumptions about the nature of data are 

INTRODUCTION 

The treatment of non-isothermal thermoanalytical data is a widely 
discussed topic in thermal analysis. 

Many techniques exist for thermokinetic model building and estimation 
of parameters (especially activation energy). Linearizations and graphically 
oriented approximate techniques converting the non-linear optimization 
problem to a linear one are very attractive methods [l]. These methods 
lead to some parameter estimates, but without physical meaning. 

The methods based on non-linear optimization lead to incorrectly stated 
problems with difficult solutions. The parameter estimates are often not 
physically acceptable, either. For a correct statement of the optimization 
target function (regression criterion), various statistical questions (i.e. model 
of measurements, statistical nature of errors, etc.) must be answered [l]. 

In this paper selected problems of building non-isothermal kinetic mod- 
els and evaluating their parameters are presented. The corresponding 
statistical problems associated with the formulation of the regression crite- 
rion for parameter estimation are also discussed. 
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BASIC APPROACH 

A simplified thermodynamical description of chemical kinetics is based 
on a constitutive system of equations defining the relations between the 
rate of conversion 6, the rate of temperature changes ? and the state of 
the investigated system represented by variables (cx, T). Two main relations 
can be defined 

da 
- = d! =f,(cr, T) 
dt 
dT 

Equation (lb) is obviously replaced by the time-temperature program 
which controls the surrounding temperature. For isothermal conditions 

dT 
-_=&O 
dt 

applies and for linear non-isothermal conditions 

(2) 

applies. Here @ means the rate of heating or cooling. 
Real sample temperature, as a combination of the surrounding tempera- 

ture and enthalpy changes during the reaction, is indicated in the case of 
DTA only. This temperature is obviously not used for computations. 

For non-isothermal thermoanalytical data treatment eqn. (la) is 
factorized to 

ci = $ = k(T, P)f(w 6) 

often 

(4) 

In eqn. (4) (Y denotes the degree of conversion (0 G (Y Q 1) and t is the 
corresponding time of reaction. 

The temperature term k(T, f3) is dependent on the temperature only. 
Model parameters B are thermodynamical characteristics of the investi- 
gated reaction (activation energy, entropy, etc.). 

The kinetic term f(cr, S> id dependent on the degree of conversion only. 
Model parameters 6 are connected with the kinetic model of the investi- 
gated reaction. 

Equation (4) is based on the formal assumption that temperature depen- 
dence in the non-isothermal kinetic model appears in the rate constant 
only. 

Based on eqn. (31, the temperature is a linear function of the time of 
reaction 

T(t) = To + @t (5) 
where To is the starting temperature. 
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From the results of thermoanalytical measurements it is often possible to 
obtain information about (Y, h and T simultaneously, i.e. the data 
t& CY~, q) for (i = 1, . , . N) are determined. 

For non-isothermal model building it is then possible to use eqn. (4) 
directly. If only integral data (ai, II:> (i = 1, . . . N) are available, the formal 
integration of eqn. (4) is adopted. The resulting relation has the form 

where 

The degree of conversion cr can be simply determined from eqn, (6) 

ff =g-l[s, F(fT s>l 

(6) 

(7) 
Equation (7) is an integral model of non-isothermal kinetics. In some cases 
the g-l(.) can be expressed in explicit form. The term F(t, f3> cannot be 
analytically integrated: various analytical approximations of F(t, (3) have 
been proposed [6]. 

In eqn. (7) the model parameters 6 and S can be estimated on the basis 
of experimental data. This task is often called the inverse kinetical problem 
(IKP). In practice, the more important parameters are p, characterizing the 
thermodynamics of the reaction being investigated. 

In thermal analysis a number of possible non-isothermal kinetic models 
obviously exist and the selection of a suitable one is very difficult. The main 
problem lies in the fact that computed thermodynamical parameters 
(activation energy) are also dependent on the kinetic model used (see 
Example I). 

NON-ISOTHER~L MODEL BUILDING 

The main problems of non-isothermal kinetic model building are dis- 
cussed in refs. 1 and 2. Some uncertainties about the IKP solution are 
thoroughly described in ref. 3. 

Two limiting situations (A and B) exist. 
(A) Based on theory and hypothesis, the theoretical models k(T, f3> and 

f(r~, S> can be specified. 
(B) The models k(T, ft> and f(cu, 6) can be examined on the basis of 

experimental data only (this problem has no general unique solution). 
In practical situations some prelimina~ information is available. The art 

of modelling lies in combining preliminary information with information 
extracted from data, to create a suitable non-isothermal model. The basic 
models for temperature terms and kinetic terms are presented below. 
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Temperature term models 

In thermal analysis the simple exponential relation for describing the 
temperature dependence of the rate constant is widely used 

k(T, P) = P1TP2 exp( -P,/RT) (8) 

Here R is the gas constant, p1 is the pre-exponentia factor (connected with 
activation entropy) and & is the activation energy (usually denoted as E). 
Commonly & = 0, when eqn. (8) becomes the well-known Arrhenius model. 
The Arrhenius model is based on the so-called reaction isochora, in which 
the activation energy is defined by 

When E is temperature independent, the integration of eqn. (9) leads to 
eqn. (8) for & = 0. It follows from the theory of unimolecular reactions 
that p2 = 1; for bimolecular reactions (solid/gas) & = 0.5. 

The well-known Eyring equation, based on the theory of absolute 
reaction rates (or the activated-complex theory) is a special case of eqn. (8) 
for & = 1 [4]. In these theories the activation energy is not constant but 
temperature dependent. 

The rate of a reaction being investigated is often dependent on diffusion 
processes. In polymeric systems diffusion processes are controlled by the 
segmental mobility of polymeric chains. The temperature dependence of 
these processes can be described by the Williams-Landel-Ferry (WLF) 
model 

k(T, P) =P1 ew 
P*(T - w 
&+T-TD 1 

(10) 

Here T, is the transition temperature defining the temperature of sudden 
increase of segmental mobility. For amorphous polymers p2 and & are 
universal constants: & = -- 17.4 K, & = 51.6 K. The main difference 
between eqn. (10) and eqn. (8) lies in fact that for eqn. (10) the activation 
energy defined by eqn. (9) is a decreasing function of temperature 

PAT 

+ T - T,,)* - ’ 1 (11) 

For viscoelastic relaxation in semicrystalic polymers it has been shown that 
the activation energy is an increasing function of temperature of the form 
El 
E = RT*j3, (12) 

This can be explained by assuming cooperative segmental mobility of 
polymeric chains. 



J. Mi~it~ and .T. &strik / ~~~rrno~~irn. Acta 203 (1992) 31-42 35 

After substitution from eqn. (12) into eqn. (9) and integration, the 
temperature term 

ktK S) =& exp(P,T) (13) 

results. 
Based on these models, it can be stated that the activation energy 

defined by eqn. (9) is not generally constant and can be either a decreasing 
or an increasing function of temperature. The classical Arrhenius model is 
based on the idealized assumption of a constant activation energy. 

Solution of the IKP requires the integration of the temperature term. 
For the case of eqns. (8) and (lo), various approximate equations can be 
used. A simple and precise approximation of the temperature term has the 
form [7] 

I ( exp -E/RT) dT= - 
I 

exp( - E/RT) 

The relative error of approximate eqn. (14) is below 1% for E/RT > 7. The 
integral of eqn. (13) can be derived analytically. 

Based on various kinetic or empirical assumptions, a number of kinetic 
terms are available. The most widely used can be described by the general- 
ized equation 

~(cY, S) = a”(1 - CZ)~‘[ -ln(l -n)]*’ (15) 

When S, = 6, = 0 eqn. (15) is equal to the nth order kinetic model (RO), 
where n = 6,. When 6, = 0 and S, = 1 the well-known Johnson-Mehl- 
Avrami (JMA) model results. The empirical Sestak-Berggren (SB) model 
is also a special case of eqn. (15) for S, = 0. 

Some kinetic models have only limited validity (e.g. the first stages of 
diffusion processes). For kinetic terms it is obviously required that 181 

lim,g-l(t) = 0 
t-to 

!iT+ t) = 1 (16) 

For empirical kinetic terms g(a) the conditions of eqn. (16) are necessary, 
especially when the f(a, 6) term cannot be derived. For example, the 
generalized JMA model suitable for description of kinetic processes con- 
trolled by diffusion has the form 

g-1(t) = (l- exp[ --F(f, B)d’])s;I (17) 
It is possible to simply evaluate the validity of the conditions defined by 

eqn. (16) for the model by eqn. (17), but the form f(a, S> is very compli- 
cated. 
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TABLE 1 

Results of non-linear regression for data generated from RO model 

Model E (kJ mol-‘) s(E) (kJ mol-‘) RSC 

RO 100.01 0.012 2.4x lo-’ 
JMA - 171.86 4.480 1.6x 1O-4 
SB 100.08 0.266 2.4x lo-’ 

TABLE 2 

Results of non-linear regression for data generated from JMA model 

Model E (kJ mol-‘) s(E) (kJ mol-‘) RSC 

RO 46.510 0.0234 5.8 x 1ov 
JMA 101.050 2.8500 3.0x 10-s 
SB 44.263 0.4600 3.2x 10F8 

TABLE 3 

Results of non-linear regression for data generated from SB model 

Model E (H mol-‘1 s(E) (kJ mol-‘) RSC 

RO 290.82 1.750 2.4x 1O-4 
JMA - 399.17 19.790 1.5x10-3 
SB 100.16 0.334 3.2x lo-’ 

In eqn. (17) parameters 6, and 6, are empirical constants (often 8, = 0.5). 
Parameters 6 are generally not so important as parameters p. The 

kinetic term, however, influences estimation of the p parameters (and 
therefore influences activation energy). Incorrect specification of g(cYa) 
leads to incorrect evaluation of activation parameters [2]. From the statisti- 
cal viewpoint the correct and incorrect models are often indistinguishable. 

Example I 
For demonstrating the influence of incorrect kinetic terms on the esti- 

mation of activation energy and the statistical precision of data approxima- 
tion, the simulated samples were prepared. The 30 points (a;,, ai, rr]:> were 
generated from RO (6, = OS), JMA (6, = 3) and SB (6, = 0.7 and 6, = 0.5) 
models. For the temperature term, the Arrhenius model was chosen. The 
same activation parameters were used (activation energy E = 100 kJ mol-‘1. 

In Tables 1, 2 and 3 the activation energy E, the standard deviation of 
the activation energy values s(E) and the residual sum of squares (RSC), 
computed for RO, SB and JMA models by non-linear regression are 
summarized. The kinetic terms used in non-linear regression models are in 
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the first columns of Tables 1, 2 and 3. A full description of this simulation 
study is given in ref. 13. From Tables 1, 2 and 3 it is possible to draw the 
following main conclusions. 

(1) Data generated by using the RO model (Table 1) can be approxi- 
mated by using the SB model with the same correct activation energy. Note 
that the RO model is a special case of the SB model for 6, = 0. The JMA 
model cannot approximate these data precisely. 

(2) Data generated by using the JMA model (Table 2) can be very 
precisely approximated by using incorrect RO and SB kinetic terms. The 
approximation is very good but the corresponding activation energies are 
very low. 

(3) Data generated by using the SB model cannot be precisely approxi- 
mated by incorrect RO and JMA models. 

This example shows that good approximation of data by non-isothermal 
models can lead to quite incorrect activation energy estimates. In practice 
this problem is more complicated, owing to the presence of measurement 
errors and the complex nature of the kinetic processes being investigated. 

Specification of temperature and kinetic terms 

For specification of kinetic f(cr, 8) and temperature k(T, p> terms, the 
series of isothermal kinetic curves at various temperatures can be used. 
After specification of these terms for a particular system, the non-isother- 
mal experiments can be simply processed. 

Very often this approach cannot be used and it is possible to investigate 
only the data from non-isothermal experiments: for specification of kc.1 
and f(.), partial regression graphs combined with a broad spectrum of 
possible models can be used. 

Very often the models defined by eqn. (8) and eqn. (15) can be com- 
bined. The resulting kinetic model has the form 
da 
dt = plTpz exp( -&/RT)a’l(l - a)“[ -ln(l -a)]” (18) 
Let the error of ‘Yi or (Yi measurements be multiplicative (see eqn. (25)). 
Then eqn. (18) can be correctly logarithmically transformed into the linear 
regression model 

5 
yi =A, + c AjXij (19) 

j=l 

where yi = ln((Yi); xi1 = ln(Ti;,>; Xi2 = l/q; xi3 = InCai); xi4 = ln(1 - CU,); Xi5 
= ln[ - ln(1 - (~~11. Parameters A,, . . . A, are transformed parameters pl, 
. . . & and a,, . . .a,. 

Substitution into eqn. (19) for i = 1, . . . N, produces a set of N linear 
equations with six unknowns. In matrix notation this set has the form 

y=X4 (20) 
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where y is an (N X 1) vector, X is an (N X 6) matrix and A is a (6 X 1) 
unknown vector. 

The theory of linear regression states that parameters A can be obtained 
by orthogonal projection of y into the space spanned by the columns of 
matrix X. 

For investigation of partial linearity between y and the jth column Xi of 
matrix X, the projection into space L orthogonal to the space defined by 
the columns of matrix X is used. Matrix XIjl is created by dropping the 
jth column x. from matrl X. 

The correlponding projection matrix into space L has the form 

(21) 

Let u = Prjly and v = Prilxj. The partial regression graph is then the 
dependence of vector u on vector u [9]. If the term xj is correctly 
specified, the partial regression graph forms a straight line. Systematic 
non-linearity is an indication of incorrect specification of xi and a random 
pattern shows the unimportance of xj for explaining the variability of y. 

It is possible in practice by selecting &, a,, 6, and a,, to specify a 
particular kinetic model. From the partial regression graph it is then 

Fig. 1. Simulated peak (Example I). 
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Fig. 2. Partial regression graph for data from Example I and correct Arrhenius term (l/ T). 
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Fig. 3. Partial regression graph for data from Example I and incorrect simple exponential 
term (T) (see eqn. (13)). 
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possible to investigate its correctness. This approach has been applied for 
simulated data in Example II. 

Example II 
In ref. 2 the partial regression graphs for simulated data (a combination 

of an Arrhenius term with In /3i = 23.03; p2 = 0; & = 200 kJ mol-‘, and a 
JMA term with 6, = 0; 6, = 1 and 8, = 0.5) have been presented. Simu- 
lated data are shown in Fig. 1. These simulated data have been used for 
investigating the effect of incorrect specification of the temperature term 
on the shape of the corresponding partial regression graphs. In the correct 
case, a combination of the JMA kinetic term and the Arrhenius term was 
used for creation of the partial regression graph. In the incorrect case, the 
Arrhenius term was replaced by the simple exponential term defined by 
eqn. (13). 

The partial regression graph for the correct case and the variable x2 
(l/T) in eqn. (19) is shown in Fig. 2. The corresponding partial regression 
graph for the incorrect case is shown in Fig. 3. It is evident that incorrect 
specification of the temperature term also leads to pronounced non-linear- 
ity in the partial regression graphs. 

SOLUTION OF THE INVERSE KINETIC PROBLEM 

The final stage in non-isothermal kinetic modelling is parameter estima- 
tion for known integral model g-‘(t) or the differential model defined by 
eqn. (4), and evaluation of its corresponding statistical characteristics. 

Let us concentrate in this section to the integral model 

g-‘(t) =g-‘(F(f), P) (22) 
which contains the unknown estimable parameter vector p = (B, 8). For 
this case the commonly used least squares (LS) criterion has the form 

S(P) = 2 [Qi -_g-‘(F(Q, P)]* (23) 
i=l 

Parameter estimates p can be obtained by minimizing S(p). The LS 
criterion is not generally applicable and its effectivness is dependent on 
very strong assumptions about the measured variable (Y and errors in 
measurements. Basic assumptions are as follows. 

(1) Measured degree of conversion (Y~ corresponds to additive model of 
measurements in the form 

ai =g -‘(F(4), P) + Ei (24) 
where &i are identically distributed random variables (errors) whose mean 
value equals zero ( E(F~) = O), with a unimodal probability density function. 

(2) Errors of measurements have constant variance (D(E~) = o*). 
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(3) Errors of measurements are mutually independent, i.e. they are 
uncorrelated (E(E~ - Em) = 0; i # j). Then the measured quantities (Y~ and aj 
are also independent. 

In the thermal analysis assumptions (l)-(3) are often not acceptable, as 
follows. 

(1) The model of measurements defined by eqn. (24) has some con- 
straints. The main problem lies in the fact that for continuous errors &i on 
the whole real line, the (Y~ can with non-zero probability be negative. This 
physically impossible situation can be overcome by use of the multiplicative 
measurement model 

ayi =g-‘(F(4), P) exp(q) (25) 
In eqn. (25) the errors &j have the same properties as in eqn. (24). The 

statistical technique for discrimination between additive (eqn. (24)) and 
multiplicative (eqn. (25)) measurement models have been proposed in ref. 
10. 

(2) Variance-constancy in measured variables can be achieved over a 
small range only. Ranges of measured (Y~ are often lop4 to 0.99. Therefore 
the relative measurement error is commonly constant and error variance 
D(E~) is an increasing function of the measured quantity Q. A dependence 
of this type also follows from the multiplicative measurement model of eqn. 
(25). 

(3) Independence of measurements in non-isothermal kinetic experi- 
ments cannot be generally accepted. Owing to special experimental ar- 
rangements (measuring on one system only) the errors caused by process 
conditions variation (e.g. thermal fluctuations) are cumulative [ll]. The 
total error ej is then composed of the measuring device error dj and 
cumulative process fluctuations ui 

&j =dj+ k uj 
j=l 

(26) 

The regression criterion for estimation of parameters p is dependent on 
the magnitude of individual terms in eqn. (26). 

For a precise measurement device (dj small), the LS criterion must be 
replaced by a difference form 

(27) 

Full derivation of S, and other special variants of the regression criteria 
for gi defined by eqn. (26) are given in ref. 11. 

It can be concluded that the more realistic assumptions about data and 
their origin lead to more general estimation problems [9,11]. For effective 
solution of these problems, non-linear optimization methods can be used. 
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A serious numerical and statistical problem is the strong multicollinear- 
ity between parameters, especially of temperature terms. The practical 
consequence of this multicollinearity is that a small change in the regres- 
sion criterion value leads to very large changes in parameters I3 (e.g. 
activation energy El. This leads to the activation energy appearing to be 
dependent on the quality of the software used. It has been verified that the 
classical statistical software packages (BMDP, SYSTAT, SAS, STATGRAPHICS, 

SPSS and others) are unsuitable for solution of the IKP [12]. Based on our 
tests, the best system is the statistical system ADSTAT [14]. ADSTAT enables 
full statistical analysis of the IKP from the point and interval estimates, 
computing to the expression of model quality and finally to the influential 
points and sensitivity analysis. 

CONCLUSIONS 

The solution of the IKP is generally very complicated and the resulting 
estimates are often unacceptable from a physical viewpoint. It is necessary 
to analyse experimental data with great care and to compare the adopted 
assumptions with experiment. For solution of the IKP, it is necessary to 
have suitable software. Statistical analysis of the IKP often avoids the use 
of incorrect models and parameters. In the age of computers it is possible 
to replace some approximate graphically oriented techniques for the IKF’ 
by more correct methods based on finer assumptions about data and the 
process studied. 
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