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Abstract 

Owing to the compensation effect, multiple sets of Arrhenius parameters can be 
obtained from non-isothermal data. This leads to non-unique results and, hence, to 
criticisms of the non-isothermal methods. In this paper, procedures used to analyze 
non-isothermal data in order to obtain reliable Arrhenius parameters for simple reactions 
are discussed. The integral method has been found to yield reliable Arrhenius parameters 
from non-isothermal data. Concurrent use of the integral and the multiple heating-rate 
methods has been found to be a powerful tool for obtaining reliable results for both the 
order of reaction and the Arrhenius parameters. 

INTRODUCTION 

I am honored to participate in an issue dedicated to Joe Flynn. It was 
Flynn’s publications [l] and the late Professor H.H.G. Jellinek’s course on 
polymer degradation at Clarkson University that triggered my interest in 
non-isothermal reaction kinetics. Flynn has worked extensively on the 
kinetics of non-isothermal reactions (both simple and complex reactions) 
and was one of the first researchers to identify the problems of uniqueness 
with kinetic parameters obtained from non-isothermal analysis. Unfortu- 
nately, the problem of uniqueness has generally been ignored, resulting in 
an accumulation of unreliable results. In this paper the reliability of 
non-isothermal kinetics (in the light of the uniqueness problem) and its 
application in understanding the behavior of simple reactions are dis- 
cussed. The non-isothermal kinetics of complex reactions is discussed in 
the companion paper. 
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Non-isothermal methods generally involve heating the reactant at a 
constant rate from ambient temperature to a temperature sufficiently high 
so that the reactant undergoes transformation. In theory, all experiments 
conducted to measure the Arrhenius parameters are non-isothermal be- 
cause they generally involve a change in temperature as a function of time, 
at least during the initial heating and cooling periods. Non-isothermal 
techniques are becoming extremely popular in the study of reaction kinet- 
ics. The popularity of non-isothermal methods is due to the fact that both 
analytical and kinetic data can be obtained simultaneously from a single 
experiment, and in a relatively short period of time. Unfortunately, the 
ease with which such data can be obtained has resulted in an increased 
volume of data and confusion, rather than an increase in the quality of 
research in thermal analysis [l]. Non-isothermal kinetic equations are 
mathematically more involved and, consequently, are not without prob- 
lems. Several reviews have been published on the techniques used to obtain 
Arrhenius parameters from non-isothermal experiments [l-lo]. 

The studies of Flynn and Wall [l] have indicated a problem of unique- 
ness with kinetic parameters from non-isothermal analysis. Unfortunately, 
the problem of uniqueness has generally been ignored resulting in unreli- 
able results and in criticisms of non-isothermal methods [ll-151. For 
example, the reported values of the activation energy for the decomposi- 
tion of the simple substance CaCO, range from about 20 to over 300 kcal 
mol-‘, and the calculated value of the rate constant varies by over three 
orders of magnitude [16]. Hence it is not surprising that the usefulness of 
Arrhenius parameters obtained from non-isothermal techniques is ques- 
tioned. Recently, Boldyreva [12] criticized most of the non-isothermal 
kinetic information available in the literature and suggested that such 
kinetic information may be meaningless. Although this criticism may be 
strong (but not necessarily wrong), it does imply the need to establish a 
standard procedure to assure the reliability of kinetic data obtained from 
non-isothermal methods. 

In this paper, the limitations of thermoanalytical devices will be dis- 
cussed briefly, followed by a review of the reliability of non-isothermal 
kinetics (in the light of the uniqueness problem) and its application in 
understanding the behavior of simple reactions. The applications of non- 
isothermal techniques to complex reactions such as competitive, multiple 
and successive reactions will be dealt with elsewhere [17]. 

EXPERIMENTAL LIMITATIONS 

Experimental techniques such as thermogravimetry (TG) and differential 
scanning calorimetry (DSC) are being used increasingly as analytical tools 
for the identification and characterization of solid materials, and also for 
determining kinetic parameters. To determine reliable kinetic parameters 
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from non-isothermal data, variables such as weight (or enthalpy), time and 
temperature need to be measured precisely. Although the weight (or 
enthalpy) and time can be measured with reasonable accuracy using 
modern thermal analysis devices, temperature measurement remains a 
serious problem in the case of TG balances [3,18-221. This is because the 
measurement of the actual sample temperature in TG is difficult because it 
hinders the weighing mechanism. Therefore the thermocouple is not gener- 
ally in contact with the sample and careful attention must be given to 
temperature measurement. The difference between the measured and the 
correct sample temperature may be as high as 45 K (if not more) depending 
on the experimental conditions. Although errors due to temperature meas- 
urement may be minimized by increasing the reaction temperature range 
and/or by placing the thermocouple close to the sample, calibration of the 
system under identical experimental conditions is a prerequisite for reliable 
results. Agrawal [19] has suggested that a temperature range of at least 70 
K is desirable for reducing errors in estimating the Arrhenius parameters. 
For a reaction occurring over a temperature range of less than 70 K, errors 
due to uncertainties in temperature measurement can be significant. In 
such a case, detailed analysis of errors is desirable to reduce the uncer- 
tainty in estimated values of the Arrhenius parameters. In most modern 
devices, instrumental limitations are “believed” to have been minimized to 
yield acceptable data. 

KINETIC ANALYSIS OF SIMPLE REACTIONS 

For a well-defined set of experimental conditions, the shape of the 
non-isothermal curve obtained from thermoanalytical devices reveals the 
kinetic nature of the reaction being studied. A simple reaction is repre- 
sented as 

a --) products 

Because the reaction rate is proportional to the amount of reactant a at 
any time f, the reaction rate is assumed to be represented by the relation 

da/dt = kf( CX) (I) 

where (Y represents the conversion of the reactant at time t, f(a) is the 
conversion factor of (Y, and k the rate constant. For a true reacting system, 
f(a) is a function of time and k is a function of temperature. In condensed 
phase studies, cr is generally defined by the relation 

a = (I% - lW(I& - 6) (2) 

where W is the weight of the sample and the subscripts 0 and f refer to the 
values at the beginning and at the end of the weight-loss reaction. cr varies 
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from 0 to 1 as the reaction proceeds to completion. The temperature 
dependence of the rate constant k is assumed to have the Arrhenius form 

k =A exp( -E/RT) (3) 

where A is the pre-exponential factor, E the activation energy and R the 
gas constant. The application of the Arrhenius equation to solid-state 
reactions has often been criticized in the literature. The misconceptions in 
the use of the Arrhenius equation have been referred to in detail by Flynn 
[23] and Agrawal [19,24,25]. For a simple reaction, the Arrhenius equation 
is appropriate provided E > 2RT or k <A e-‘. Despite criticism of the 
use of the Arrhenius equation, it is perhaps the most widely used equation 
and is satisfactory in explaining the temperature dependence of the rate 
constant in solid-state decomposition kinetics. 

Identifying the form of f(a) and the order of reaction 

Identifying the correct form of f(a) to be used for kinetic analysis is not 
trivial; and identifying the true form of f(a) is critical for obtaining unique 
results. The simplest and the most frequently used model for f(a) in the 
analysis of non-isothermal data is 

f(a) = (1 -a)” (4) 
where n, in analogy to homogeneous chemical kinetics, is referred to as the 
order of reaction. Numerous forms of f(a) have been reported in the 
literature for the decomposition of solids [5,26-281. These rate equations 
include processes such as chemical decomposition, nuclei growth and 
diffusion. The applicability of f(a) expressions used in nuclei growth and 
diffusion processes to non-isothermal reactions will be discussed in a 
subsequent publication [26]. Rate equations involving multiple use of CY in 
the f(a) expression result in non-unique estimates of the kinetic parame- 
ters and should be avoided. 

Although the data can be fitted by more than one form of f(a), the aim 
should be to select a model which uses the minimum number of parameters 
to fit the data with reasonable accuracy. Some forms of J?(Y) recommended 
for determining Arrhenius parameters involve using of reaction of (in order 
of preferred sequence) 0, 1, 2 or fractional orders, l/2 or 2/3. Although 
other orders of reaction are possible, by using these orders of reactions the 
data can be linearized in most cases. For uniqueness of the results, no 
more than two parameters should be estimated from a single curve. 
Extraction of more parameters may lead to non-unique results which are 
meaningless. However if the decomposition products are measured, then 
additional parameters may be considered, depending on the accuracy of 
the data. 
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Fig. 1. Normalized weight fraction Cl- (r) as a function of temperature for various orders of 
reaction (A ==‘3.6~ 1U13 min-‘, E=4Q.Okcalmol-‘and~=20Kmin-‘). 

Figure 1 ~~mrnari~s. ‘&IF nornt;P’iized, residual weight as a function of 
temperature fur va4dus orders of reaction. This is the form of data 
obtained ,$~CXBI tie-l anafysis deviq .and it is difficult to pin down the 
reaCtian or&~ based 153a this limited .inform$tion. However, the shape of 
the CU~XQ may be used to obtain preliminary information on the order of 
re&tiQn, As the order of reaction increases from 0 to 2, the tail of the 
curve increases, Flynn iI1 has shown that the peak width of a plot of 
da/dT wainst temperature increases with an increase in the order of 
reaction (see Fig. 2). Also the amplitude of the peak decreases with an 
increase ia the reaction order. However, because the maxima (in Fig. 2) of 
these reactions (with the same Arrhenius parameters) occur in a narrow 
tem~erat~e range it is difficult to identify uniquely the order of reaction+ 
A plot of dtu/dT versus conversion .[cx) or (1 - cr) shows a clear difference 
in the order of reaction (Fig. 3). 

The conversion at the maximum dar/dT is unique for a given order of 
reaction. However, at the maximum rate, owing to the fast reaction 
together with instrumental limitations, the errors in determining the tem- 
perature and conversion may be high. Analyzing the results of Kissinger 
[29], Flynn [ll has shown that at the maximum rate, expressions can be 
summarized as 

41 - a)n-* at max rate = 1 + (II - 1)2RT,,,/E for IZ > 0 and f 1 

(5) 

-In(l - ty) at max rare = (1 - 2RT,,/E) for n = 1 (6) 
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TEMPERATURE (K) 

Fig. 2. Temperature derivative (da/U) as a function of temperature; data are shown in 
Fig. 1. 

Based on these approximations, Table 1 summarizes the value of (1 - cy),,, 
as a function of various orders of reactions and E/RT ratio. 

Figure 4 summarizes the order of reaction as a function of normalized 
weight at maximum rate (1 - aImax and E/RT ratio. At low values of 

i-ALPHA 

Fig. 3. Temperature derivative (da/dT) as a function of normalized weight (I- a); data 
are shown in Fig. 1. 
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TABLE 1 

Value of Cl- (Y),, as a function of order of reaction and E/RT 

Reaction (1 - a) at maximum rate 
order 

99 

E/RT=lO 20 30 40 50 m 

l/2 0.3086 0.2770 0.2675 0.2630 0.2603 0.2505 
1 0.4493 0.4066 0.3932 0.3867 0.3829 0.3686 
3/2 0.5378 0.4900 0.4746 0.4669 0.4624 0.4453 
2 0.600d 0.5500 0.5333 0.5250 0.5200 0.5010 
3 0.6831 0.6325 0.6146 0.6055 0.6000 0.5785 
4 0.7368 0.6875 0.6694 0.6600 0.6542 0.6312 
5 0.7746 0.7274 0.7095 0.6999 0.6940 0.6701 

reaction order, (1 - (Y),,.,~~ is slightly dependent on the E/RT ratio. How- 
ever at high orders, (1 - (Y),, becomes a strong function of the E/RT 
ratio. Because E/RT is not known a priori, this implies that the higher 
order of reaction determined by this method may not be very accurate. To 
estimate a preliminary value for the reaction order based on the conversion 
at the maximum rate, the following expression has been developed 

n = i exp[ j(1 - C-X),,] (7) 

where i and j are the constants obtained by fitting the data in Table 1 to 
the equation and are summarized in Table 2. As a first guess, E/RT = 20 
appears reasonable to estimate the order of reaction based on the maxi- 

Fig. 4. Order of reaction as a function of Cl- (Y),.,,,~ and E/RT. 
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TABLE 2 

Parameters for eqn. (7) 
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E/RT i j 

10 0.1099 4.8789 
20 0.1253 5.0486 
30 0.1288 5.1457 
40 0.1301 5.2053 
m 0.1319 5.4213 

mum rate. The final 
accurate equations. 

result can be updated by iterations and using more 

Arrhenius parameters from non-isothermal data 

Depending on the Arrhenius parameters, the nature of the non-isother- 
mal curve can be significantly different, Figure 5 summarizes the results of 
the normalized weight (1 - a> as a function of temperature. As the activa- 
tion energy increases, the reaction temperature range decreases. As the 
activation energy decreases, the reaction becomes less sensitive to tempera- 
ture and the reaction occurs over a broad temperature range. The Arrhe- 
nius parameters (summarized in Fig. 5) were chosen such that the tempera- 

Fig. 5. Normalized weight fraction for a first-order reaction as a function of temperature for 
various activation energies: A, = 5.9~ lo6 min-‘, E, = 20.0 kcal mol-‘; A, = 3.8x 1013 
min-‘, E, = 40.0 kcal mol-‘; A, = 2.0~ 10” min-‘, E, = 60.0 kcal mol-‘; and, A, = 9.0x 
10z6 min-‘, E = 80.0 kcal mol-‘. fi = 70 k min-‘, T,,, = 668 K, and TisO = 649 K. 
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Fig. 6. Temperature derivative as a function of temperature and activation energy; data 
given in Fig. 5. 

ture at the maximum of all four reactions coincide. The temperature 
derivative as a function of temperature is shown in Fig. 6. The peak width 
of the temperature derivative curve decreases with an increase in E, 
indicating that the reaction occurs in a narrower temperature range. The 
temperature derivative peak-amplitude increases with an increase in A/P. 
Owing to the compensation effect (discussed later), an increase in E is 
generally accompanied by an increase in A; therefore, with an increase in 
E, the peak width decreases. Comparison of the curves in Figs. 2 and 6 
indicates that an increase in activation energy is similar to a decrease in the 
order of reaction. Thus identification of the order of reaction and the 
activation energy could be difficult without further analysis. To separate 
the effects of reaction order and activation energy, the temperature deriva- 
tive should be plotted against normalized weight fraction or conversion (see 
Fig. 7). Figure 7 indicates that the peak occurs at the same conversion for 
the same order of reaction, almost independent of the activation energy. By 
comparing Figs. 3 and 7 it becomes relatively easy to identify differences 
due to reaction orders and the activation energy. However, the value of the 
Arrhenius parameters cannot be obtained from these figures. Reliable 
methods to obtain Arrhenius parameters are discussed briefly below. 

If the temperature of an nth order system is linearly increased, eqn. (1) 
can be rewritten as 

da/dT = (A/P) exp( -E/RT)(l - a)” (8) 
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2 

NORMALIZED WEIGHT (1 -ALPHA) 

Fig. 7. Temperature derivative as a function of normalized weight and activation energy; 
data given in Fig. 5. 

where /I, = dT/dt, represents the heating rate; da/dT is the temperature 
derivative of the extent of non-isothermal conversion and is also referred to 
as the rate. Over the years numerous methods have been proposed to 
obtain Arrhenius parameters from eqn. (8). During the fifties and early 
sixties, owing to the lack of computing techniques, Arrhenius parameters 
were obtained from eqn. (8) by linearizing it to the form 

ln(da/dT) = 12 ln(1 - a) + ln(A/p) - E/RT 

or 

(9) 

ln(P da/dT) = ln[ A(1 -a)“] - E/RT (10) 

From these equations, A, E and n were obtained. The use of da/dT for 
studying the behavior of reactions or for comparing results is acceptable; 
however, the use of da/dt (or da/dT) along with (Y to obtain results is 
controversial. This is because dcu/dt (or da/dT) is obtained from (Y (even 
from highly sophisticated thermal analysis devices) and can result in errors 
due to auto-correlation. Manipulating eqn. (9) and (10) to obtain the three 
parameters, n, E and A, from a single curve results in non-unique results 
and is not recommended. It is stressed that no more than two parameters 
should be extracted from a single curve. Flynn and Wall [ll have analyzed 
the non-isothermal data and have shown that the differential method 
(involving utilization of the rate) and the difference differential method 
(involving difference in rate) results in magnification of experimental 
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scatter, thereby yielding erroneous results. Therefore, further use of differ- 
ential methods and difference-differential methods should be discouraged. 

Ozawa [30] and Flynn and Wall [31] have shown independently that eqn. 
(9) with Doyle’s approximation [32] can be reduced to the form 

In f( CK) = ln( AE/R) - In /3 - 5.33 - 1 .OSE/RT (11) 

At a constant conversion level, a plot of In p versus l/T will yield a slope 
of l.O5E/R. This method is popularly referred to as the Ozawa-Flynn-Wall 
(OFW) method, the isoconversion method, or the multiple heating-rate 
method. Maximum rate methods such as the Kissinger [29] could be 
considered to be a special case of the OFW equation. Friedman [33] had 
earlier proposed the use of rate (da/dt) rather than f(a) for determining 
the kinetic parameters. Because the experimental accuracy of f(a) is 
greater than da/dt, the OFW equation is superior to the Friedman 
equation. Theoretically, the OFW equation is powerful and independent of 
the choice of the form of f(a). It also allows for the examination of E as a 
function of conversion. There are some experimental limitations, and 
calculations of the constant conversion factor can be troublesome [34]. 
Conducting experiments at different heating rates can result in variation of 
temperature gradients with the sample leading to erroneous results. 

Another popular method for obtaining the Arrhenius parameters from 
non-isothermal data is the integral method, perhaps the most reliable 
method for determining the Arrhenius parameters from non-isothermal 
data. The integral method involves integrating eqn. (8) to obtain 

g(a) = / da/f(a) =A/P/exp( -E/RT) dT (14 

and then approximating the temperature integral (also known as the 
exponential integral) / exp( -E/RT) dT to obtain [l] 

/ exp( -E/RT) dT = E/Rlxd2 epX dx = (E/R)p( x) (13) 

where x = E/RT and p(x) is a function which includes the temperature 
integral. Equation (12) now reduces to the form 

g(a) = (AE/PR)P(x) (14) 

For large values of x (> 501, the errors due to approximation are negligi- 
ble. However for lower values of x (5-40) of interest in thermal analysis, 
errors resulting from approximations may not be negligible. A significant 
amount of information in the literature is based on poor approximations. 
The results from these studies are misleading and this is the reason for 
most criticism of non-isothermal methods. Several series expressions and 
semi-empirical approximations of p(x) are available in the literature [l-4]. 
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Fig. 8. Accuracy of various temperature integral approximations. 

Agrawal [35,36] has shown that most of the temperature integral approxi- 
mations can be generalized $0 the form 

where m = 0 for the Coats and Redfern equation, m = 4 for the Gorbachev 
equation, m = 5 for the Agrawal equation and m = 6 for the Li equation. 
For low values of x the ideal value of m varies from 4.6 to 5. Although the 
condition m = 0 is popularly referred to as the Coats-Redfern equation, 
the form of the equation is available in earlier literature [29,37,38]. The 
term in the right-hand-side bracket of eqn. (15) is the generalized correc- 
tion factor (0’). For reactions of interest in thermal analysis, deviation 
from the exact solution by less than 0.1% is desirable, although deviations 
of less than 1% may be acceptable. Figure 8 indicates the accuracies of 
some of the integral forms. For the preliminary approximation CF = 1. The 
preliminary approximation (still used in many studies) is a very poor 
approximation with deviations of over 2% for x = 80. At lower values of x 
the deviations are significantly higher and therefore the use of the prelimi- 
nary approximation should be avoided. The deviations of the Coats- 
Redfern equation are greater than 1% for x values less than 23. The 
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deviations of the Gorbachev equation are less than 0.1% for x values 
greater than 41 and less than 1% for x values greater than 11. The Li 
equation deviates by less than 0.1% for x values greater than 21 and by 
less than 1% for x values greater than 9. The Agrawal equation deviates by 
less than 0.1% of x values greater than 7. Thus depending on the value of 
X, any of the equations should be acceptable for non-isothermal kinetic 
analysis. 

The Arrhenius parameters can then be obtained by linearizing the 
generalized integral equation to obtain 

ln[ g(cu)/T2] = ln[(AR/@E)CF] - E/RT (16) 
A plot of ln[‘a>/T2] versus l/T will yield a slope of -E/R and an 
intercept of ln[(AR/PE)C~]. Equation (16) indicates that the use of the 
CF does not in~uence the estimation of E, but influences the value of the 
pre-exponential factor and thus the rate constant. So although E values 
may be comparable from various approximations, the value of the rate 
constant will be significantly different. Therefore, more accurate equations 
should be used to obtain reliable Arrhenius parameters. 

For a simple reaction, both the multiple heating-rate and integral 
methods should yield identical values of the Arrhenius parameters. To 
obtain the Arrhenius parameters, the integral method requires fewer 
experiments when compared to the multiple heating-rate method. If data 
are available, a combination of integral and multiple heating-rate methods 
provides a powerful tool with which to study non-isothermal reactions. 
Differences in the Arrhenius parameters from these two methods, if any, 
should be helpful in identifying experimental errors and/or the nature of 
the reaction. It is stressed that reporting the value of E alone is not 
sufficient: reporting and comparing the value of the rate constant is more 
appropriate. 

The kinetic analysis discussed in this paper is limited to chemical 
reactions and is, therefore, independent of sample size, heating rate, 
particle size and geometry of the sample holder. Simon [39] has shown the 
influence of such physical factors on the weight-loss curve. These physical 
parameters complicate the study of chemical reactions and should be 
avoided. Flynn (401 has recently proposed some ground rules to be applied 
to avoid problems in gathering TG data. 

RESOLUTION OF UNIQUENESS PROBLEMS 

Although the non-isothermal curve indicates the nature of the solid state 
reaction being studied, analyzing the data to obtain unique kinetic parame- 
ters can be problematic due to the compensation effect. The compensation 
effect [16,19,41] causes the kinetic parameters A and E to be linked (see 
Fig. 9). An increase in slope (E/R) causes an increase in the intercept 
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‘fib 

l/TEMPERATURE 

Fig. 9. Arrhenius plot displaying a natural link between In A and E due to the compensa- 
tion effect. 

(In A) and a decrease in the slope causes a decrease in the intercept. 
Owing to this relationship, numerous values of E may fit the data. For 
example, a reaction with a rate constant of 0.015 min-’ at 300°C can be 
reasonably well represented by an Arrhenius equation with an E of either 
20 or 60 kcal mol-’ in the narrow temperature region around 300°C 
depending on the value of A [25]. Thus obtaining Arrhenius parameters 
from both isothermal and non-isothermal data could become difficult 
owing to the compensation effect. 

Many researchers show a plot of conversion versus temperature to 
compare their model with experimental data. However, this is not a 
convincing method of testing the model. The results of Flynn and Wall 111 
indicate the closeness of the normalized residual weight (1 - a) curves for 
different activation energies. They showed that for E values of 35, 40 and 
80 kcal mol-’ (maximum rate at LY = OS), the conversion data look very 
similar. Figure 10 is a similar plot of normalized weight as a function of 
temperature for E values of 40 and 60 kcal mall’. The pre-exponential 
factors were chosen such that the rate constant is equal to 573 K and is 
summarized in Fig. 10. Thus depending on the accuracy of the data, it 
appears that both sets of Arrhenius parameters may fit the data. Therefore 
comparison of model to experimental data by plots of conversion versus 
temperature is unreliable. In order to resolve the issue, a plot of tempera- 
ture derivative (da/dT) as a function of temperature (or conversion) may 
be plotted (Fig. 11). The higher E reaction has a sharper peak and the 
lower E reaction has a broader peak. However if the errors at the 
maximum rate are not negligible, it becomes difficult to identify the 
magnitude of E based on Fig. 11. The magnitude of E can be identified by 
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400 500 520 540 560 580 600 e20 640 

TEMPERATURE (K) 

Fig. 10. Normalized weight fraction for a first-order reaction as a function of temperature. 
Set 1: A = 3.6~ 1Ol3 min-’ andE=40kcalmol-‘;Set2: A=1.5X1021min-1andE=60 
kcal mol-‘. /3 = 1 K min-‘. 

varying the heating rate as shown in Fig.12. The higher E reaction will be 
more sensitive to temperature resulting in separation of the data. However 
this requires additional experimentation. As suggested by integral methods, 
a plot of ln{[ - ln(1 - (r)]/P} versus l/T may be plotted (Fig. 13). Figure 
13 indicates that by plotting the data, one can be successful in identifying 

0.035 

,.-., 

, 0.03 - : 
; : E-MKc4/m. 

: 

: : 

0.025 - i : 

0.02 - 

0.015 - 

0.0, - 

o.co5 - 

0 
480 MO m 540 so 580 600 m 

TEMPERATURE (Kj 

-I 
64 0 

Fig. 11. Rate as a function of temperature. The Arrhenius parameters and the heating rate 
are given in Fig. 10. 
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460 480 580 600 620 

TEMPERATURE (K) 

Fig. 12. Normalized weight fraction for a first-order reaction as a function of temperature. 
Set 1: A = 3.6~ 1013 min-’ and E = 40 kcal mol-‘. Set 2: A = 1.5~ 1021 min-’ and E = 60 
kcal mol-‘. p = 0.1 K min-‘. 

the values of A and E. The value of E is obtained from the slope, and A 
can be obtained from the intercept. However, the temperature range is 
again critical. If the temperature range is limited to + 15 K around 573 K 
(the temperature at which the rates are equal), then it can be extremely 
difficult to obtain the correct value of E. Therefore, the reaction tempera- 

Fig. 13. Arrhenius plot as suggested by the integral method; data are shown in Fig. 10. 
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ture range should be large enough (at least 70 K> to avoid complications 
due to the compensation effect. 

CONCLUSIONS 

Experiments conducted to obtain kinetic parameters should be designed 
such that complications due to temperature measurement and due to 
physical factors, such as particle size, sample size, geometry of the sample 
holder etc. are minimized. Physical factors tend to make the reaction 
diffusion-limited and lead to complications while analyzing the data. Iden- 
tifying the correct form of f(cr> is critical. Although more than one model 
of f(a) may fit the data, the aim should be to select a model which 
requires the minimum number of parameters to fit the data within reason- 
able accuracy. Maximum rate equations are helpful to pin down the order 
of reaction. Both the multiple heating-rate method (OFW equation) and 
the integral method (generalized equation proposed by Agrawal) are rec- 
ommended to obtain the kinetic parameters. For a simple reaction, both 
methods yield identical results. Because E can be estimated from the OFW 
equation without a knowledge of f(a), differences, if any, in the two 
recommended methods should be helpful in identifying the correct form of 
f(a) and should reveal the true nature of the reaction. Due to the 
compensation effect, A and E (either or both) should not be assumed a 
priori, but should be estimated from the data. 

In brief, data gathering has become easy due to modern thermoanalyti- 
cal devices; however, analysis of the data to obtain unique and reliable 
Arrhenius parameters remains a challenge. 
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