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Abstract 

The theory of the heat conduction calorimeter for scanning in the case of non-uniform 
distribution of temperature. in the reaction domain is presented. The surface average 
temperature over the outside surface of the reaction domain provides significant informa- 
tion on the thermal behavior of the reaction domain. If the surface average temperature is 
recorded against time, a thermogram curve is obtained and gives a peak due to the thermal 
reaction under investigation. The proportionality relationship between the time integral of 
the peak and the enthalpy change of the thermal reaction is proven, and a proportionality 
constant is derived. 

INTRODUCTION 

When the distribution of temperature and concentration of a reactant is 
uniform, the thermodynamic state of the reactant under constant pressure 
is determined by two variables, the temperature T and the extent of 
reaction 5. The energy change rate due to chemical or physical change in 
the reactant can be determined by the deconvolution method developed 
based on heat conduction calorimetry during quasi-isothermal operation 
[Il. 

When the distribution of temperature and concentration of a reactant is 
non-uniform, the thermodynamic state of the reactant cannot be found 
from a simple set of thermodynamic variables (5, T), nor is it possible to 
determine the rate of energy change by the deconvolution method as 
shown previously [l]. However, if the surface average temperature over the 
outside surface of the reactant is defined, significant thermal information 
such as the enthalpy change due to the thermal reaction of the reactant can 
be obtained from measurement of the surface average temperature. 
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MODEL AND BOUNDARY-INITIAL VALUE PROBLEM 

The model is the same as that shown in the previous paper (see fig. 1 in 
ref. 1). It consists of three concentric domains D,, D, and D,. Reaction 
domain D, at the center is surrounded by a heat conducting domain D,, 
and D, is surrounded by a thermal bath D,, the temperature TB of which 
is linearly changed with time t. S, is the surface between D, and D, and S, 
is the surface between D, and D,. The terms n, and n2 are unit vectors on 
surfaces S, and S, respectively and they are directed toward the interior of 

Dr. 
Some of the assumptions in the previous paper [l] are introduced here, 

as follows. 
Thermal physical properties such as heat capacity C, specific heat 

capacity c, thermal conductivity A, thermal diffusivity K and density p of 
the domains are assumed to be constant over the temperature range of 
scanning and during the thermal reaction. 

Heat transfer takes place by solid conduction, and other mechanism such 
as convection and radiation can be neglected. 

Uniformity of the temperature and concentration of the reactant is not 
assumed. Uniformity of temperature gradients (~T/&z,>,~ and (~T/%z,),~ is 
not assumed, where a/&z, denotes differentiation in the direction of vector 
n, and T = T(r, t) is the temperature at a point represented by positional 
vector r at time t. 

Boundary-initial conditions of the model are as follows. At D, and S,, 
we set 

T,=T,+at (1) 

where (Y is the rate of scanning. At D,, we have 

K,V~T = aT/at (2) 

where K~ is the thermal diffusivity of D,. Hereafter, the subscripts 1 and 2 
denote the quantities of D, and D,, respectively. 

Application of the first law of thermodynamics to D, and S, [ll gives the 
rate of enthalpy of D, as 

J-$ = h,/L2( $i, d+s +Po +dt) 
2 

(3) 

where pO and p(t) are the time-independent and time-dependent parts, 
respectively, of electrical or mechanical power in D,. Similarly, we have at 
D,, D, and S, 

(4) 
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Here, H, and H, are the enthalpies of D, and D,, respectively, and are 
represented by 

dff, aT -= 
dt lIl 

Dl 
PlC@T (5) 

dH, d 

l/J 
p2h2 dr = /// ( 

ah, 36 ah, dT 

dt = dt p, p2 at at DZ --+aTat 

(6) 

where h, = h, (5, T) is the enthalpy of D, per unit volume and dr is the 
volume element. 

(7) 

is the rate of enthalpy change of D, due to chemical or physical change 
and 5 = E(r) is the extent of the reaction of D,. 

When t I 0, we set the initial conditions as follows 

T(r, t) = TB = To 

P(f) =Po = 0 
dH,/dt = dH,/dt = 0 

(8) 

DIVISION OF VARIABLE T(r, t> 

The following division of T(r, t> reduces the above boundary-initial 
value problem to one that is simpler [1,2]. 

T(r, t) = TB +x(r) +y(r, t) +z(r, t) (9) 

The divided variables are so defined as to satisfy the conditions 
x(r) satisfies 

X(r) = 0 ~ED,uS, (10) 

K,v*X = CX rED, (11) 

(Cl + C2b = -q/-J t ), dS +po r~DruD~ 
I 

and 

(12) 
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y(r, t) satisfies 

Y(C q = 0 CD&J& 

KiV2J’ = a)‘/% i=1,2 r E Di 

and 

tso y(r, t> = -x(r) 

z(r, t> satisfies 

z(r, t)= 0 rEDBUS 

K1v2Z = dZ/at rEDI 

dS 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

U(f> + j/j, +D PiciGdT = -Al/L,(g) dS +p(t) 
1 2 1 Sl 

u(t) + //l,FJ”‘$ “dT=AI/L2[ E)s dS+@) 
2 

(21) 

(22) 

and 

t<o u(t) =p(t) =z(r, t) = 0 (23) 

PROPERTIES OF x(r) AND yb, t) 

The following properties of x(r) and y(r, t) are derived from previous 
boundary-initial conditions (lo)-(18). 

Application of Green’s theorem in symmetrical form 131 to D, enclosed 
by surfaces S, and S, gives 

(24) 

where C#J = 4(r) is defined as 

V”+(r) = 0 rEDI 

and 

(25) 

4(r), &$/&zi: uniformly equal on surfaces Si, i=1,2 (26) 
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From eqns. (11) and (25), the left-hand side of eqn. (24) becomes 

The right-hand side of eqn. (25) becomes 

Considering eqns. (lo), (12) and (13), we have 

= 41[(C,+ C2b -Pal /Al 
where +1 is the value of 4 on S,. Similarly, we have 

// 

a4 = 
s2 

-c$;+xdn 
2 2 

265 

(27) 

(28) 

(29) 

where 42 is the value of 4 on S,. Using eqn. (13), (30) becomes 

lI = -42(C,a -PoV4 +A2 x2 (31) 

s2 

where X2 is the surface average value of x over surface S, and is defined 
as follows 

X2 = +/j-;(r) dS (32) 
2 

From eqns. (24), (27), (29) and (311, we have 

where VI is the volume of D,. 
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The boundary-initial conditions of y(r, t>, eqns. (14)-(181, show that 
y(r, t) is the transient temperature of D, + D, surrounded by a thermal 
bath of zero temperature. The second law of thermodynamics thus indi- 
cates that the temperature y(r, t) approaches zero as t increases 

lim y(r, t) = 0 (34) 
t-+m 

The surface average value of y(r, t) on S, is defined as 

(35) 

and the behavior of (35) is 

lim j2(t) = 0 (36) 
t+m 

PROPERTIES OF z(r, 1) 

When a finite extension of a reaction takes place, and 

P(f) = 0 

and 

limt(r, t) =z(T, co) = 0 
t-m 

we assume finite 

and 

AH6 = jmli,(t) dt 
0 

(37) 

values 

dt (38) 

(39) 

where A Ht is the enthalpy change due to a chemical or physical change in 
D,. Integrating eqns. (19)-(22) with respect to t from 0 to ~0, we get the 
following J(r) boundary conditions 

J(r) = 0 rEDBUS (40) 

K,V2J(r) = 0 rED, (41) 

(42) 
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Applying Green’s theorem [3] to D, enclosed by S, and S,, we have 

(44) 

where C#I is defined as before. From eqns. (25) and (41), the left-hand side 
of eqn. (44) becomes 

~~~ 
= 0 

J% 

The right-hand side of eqn. (44) becomes 

From eqns. (40) and (421, we have 

= 4+$/4 

We have also 

Here we notice that 

where we define the surface average of z over S, as 

From eqns. (43) and (491, eqn. (48) becomes 

JI 
s2 

= -&AhNg/hl +A, 

(47) 

W-9 

W-4 

(50) 

(51) 
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From eqns. (44)-(51), we get 

When u(t) =0 and p(t) =p,, we set Z(T, t> =f(r, t> and assume a 
convergence value. 

j\;mf(r, t) =f(r, 03). (53) 

Boundary conditions of f(r, ccl> are derived from eqns. (19)-(22) 

f(r, m)=O, ~ED&JS~ (54) 

IQV’f(r, m) = 0, r EDI (55) 

(57) 

Applying Green’s theorem to D, enclosed by S, and S,, and considering 
eqns. (54)-(571, we have 

(58) 

where we define 

(59) 

Rearrangement of eqn. (58) gives 

f2w (+I- 42) 
-=- 

PC 
4A2 ; 

( I 2 % 

(60) 

From eqns. (52) and (601, we get 

m 

I ( 5, t 
0 

) dt= 
f2w 

PC 
AH, (61) 
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INFORMATION FROM THE SURFACE AVERAGE TEMPERATURE 

We define the surface average temperature T,(t) over the outside 
surface of the reaction domain as 

Then, we have from eqn. (91 

(63) 
The graphical behavior of T,(t) - TB as a function of t presents a 

thermogram of the reaction domain in scanning mode. T,(t) - TB is 
composed of three parts Z,, J2(t> and Z,(t). Time-independent part Z2 is 
the baseline displacement from the, zero line on a r,(t) - T, vs. t curve. 
Equation (33) shows that .1c2 is linear with the rate of scanning Q and the 
heat capacity of the reaction domain C,. Thus, measurement of Z2 gives an 
estimate of the heat capacity of the reaction domain. Expression (33) also 
shows that the ratio of heat capacity C, and thermal conductivity A, of the 
heat conducting domain can be estimated by the measurement. The term 
y2(t) is the transient part which is observed at the beginning of scanning 
and approaches zero with the passage of time. Term Z,(t) is a part due to 
thermal reaction. The graphical behavior of T,(t) and of T,(t) - TB is 
similar to that shown in the previous part (see figs. 2 and 3 in ref. 1): The 
thermogram shows a peak when a thermal reaction takes place in the 
reaction domain. 

When the temperature distribution over the outside surface of the 
reaction domain is uniform, Boersma showed that the peak area, time 
integral of the peak, is proportional to the enthalpy change due to thermal 
reaction [4]. When the temperature distribution is non-uniform, surface 
average temperature (eqn. (62)) should be measured and recorded. Equa- 
tions (52) and (61) show that the peak area is also proportional to the 
enthalpy change due to thermal reaction. The proportionality constant is 
given by eqn. (60). Thus, we can obtain the enthalpy change under 
investigation from a measurement of the surface average temperature in 
the case of non-uniform distribution of temperature in the reaction do- 
main. 
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