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Abstract 

When the temperature of the surrounding thermal bath of a heat conduction calorimeter 
is changed in a stepwise manner and the temperature distribution in the sample domain is 
not uniform, equations have been derived which are used for evaluation of the thermal 
properties of separate domains of the calorimeter. The surface average temperature over 
the outside surface of the sample domain is defined, and measurement of the surface 
average temperature as a function of time gives thermal properties such as enthalpy 
difference, heat capacity and thermal conductivi~ with use of the equations derived here. 
The validity of the equations does not depend on the method of stepwise change of the 
surrounding thermal bath temperature, but depends on the temperature difference before 
and after the stepwise change of the temperature. 

INTRODUCTION 

Instead of continuously changing the temperature of a sample or the 
surrounding thermal bath, a stepwise change in the temperature technique 
is used in DSC measurements. Staub and Perron applied the technique to 
purity determination by heat-flow DSC [l]. Flynn used the technique to 
determine the heat capacities, glass transition temperature and enthalpies 
of the transition between the two thermodynamic states of substances [2]. 
Mraw and Naas described the measurement of heat capacity of pyrite over 
the range 1004300 K by the technique [3]. 

Their method [l-3] for calculating the results obtained by the DSC 
technique is based on the assumptions that the temperature of a sample is 
uniform and that the heat exchange rate between the sample and the 
surroundings is proportional to the difference in temperature between 
them. In the usual DSC measurements, a sample amount in the order of 
milligrams is used, and their assumptions may be reasonable for such a 
small sample. However, in heat conduction calorimeter experiments, a 
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sample of more than a milliliter is used and their assumptions should be 
replaced by those allowing for temperature distribution in the sample. 

MODEL AND BOUNDARY-INITIAL VALUE PROBLEM 

The model is similar to that shown in Part 1 of this series of papers (see 
Fig. 1 of ref. 4). It consists of three concentric domains: Da, D, and D,. 
Sample domain D, at the center is surrounded by heat conducting domain 
D,, and D, is surrounded by a thermal bath D,, of which the temperature 
TB is changed to a predetermined extent in a stepwise manner with respect 
to the time t. S, is the surface between D, and D,, and S, is the surface 
between D, and I),; ni and its are unit vectors on the surfaces S, and S, 
respectively, and they are directed toward the interior of Dr. 

~sumptions similar to those in Part 2 of this series of papers [S] are 
introduced here as follows. 

Thermal physical properties such as heat capacities C, specific heat 
capacities c, thermal conductivities h, thermal diffusivities K and densities 
p of the domains are assumed to be constant over the temperature range of 
the stepwise change in the temperature of the domains. 

Heat transfer takes place by solid conduction, and other mechanisms 
such as convection and radiation can be neglected. 

Uniformi~ of the temperature of the sample domain is not assumed. 
Uniformity of temperature gradients (~T/&z,)~~ and (i3T/&& is not 
assumed, where a/an, denotes differentiation in the direction of vector n, 
and T = T(r, t) is the temperature at a point represented by the positional 
vector r at time t (i = 1, 2). 

Boundary-initial conditions of the model are as follows. 
At D, and S,, we set 

TB= is, + (Tf- Ti)a(t) (1) 
and 

a(t) = 0 for t < ti 

= any function of t for ti < t < t, 

= 1 for t > t, (2) 

At D, we have 

K,V’T = aT/at (3) 

where K1 is the thermal diffusivity of D,. Hereafter, the subscripts 1 and 2 
denote the quantities of D, and D,, respectively. 

Application of the first law of thermodynamics to D, and S, [4] gives the 
rate of enthalpy change of D, as 

d& aT 
- =A, 

dt i/i 1 s2 an, s, 

dS +p(t> 



S. Tanalca f T~ermoc~~rn. Acta 205 f1992) II - 18 13 

where p(t) is the electrical power supplied to D, during the calibration 
period and is zero except during the calibration period. Similarly we have 
at D,, D, and S, 

dH, dH, 

dt +dt=- 
dS +df) 

s 1 
(5) 

Here, H, and H, are the enthalpies of D, and D,, respectively, 
When t s 0, we set the initial conditions as follows. 

T(r, t)=TB=IZ”i 

P(f) = 0 

dH,/dt = dli,/dt = 0 

When t B tf, we set the approaching conditions as follows. 

T(r, t) = TB = Tf 

p(t) = 0 

dH,/dt = dH,/dt = 0 

(6) 

(7) 

PROPERTIES OF $(r, t) = Ttr, I)-- TB 

We set 

@(r, t) = T(r, t) - TB (8) 

Considering eqns. (l)-(7), we have bounda~-initial conditions of Nr, t) as 
follows. 

0(r, t) =0, rEDBUS (9 

(11) 

dH, dH, 

dt +dt=- 
dS +p(t) (12) 

s 1 

When t s tj and t B tf, we have 

@(r, t> = 0 

P(f) = 0 
(13) 



We assume a finite value 

J(r) = /emB(r, t) dt (14) 

Integrating eqns. (91412) with respect to t from 0 to ~0, we get the 
following boundary conditions of J(r). 

J(r) = 0, ~ED,uS, (15) 

K;C72J(r) =5 T; If l”i) rED1 (16) 

(17) 

Application of Green’s theorem in s~metrical form f6] to D, enclosed 
by surfaces S, and S, gives 

(19) 

where 4 = (6(r) is defined as 

V2#@) = 0, rED1 (20) 
+t?-), a#/ani: uniformly equal OIt surface Si, ft = f,2) (21) 
and dr is the volume element. For example, 4 = l/r for the spherical D,, 
D,, D, model and 4 = In Y for the cylindrical model. 

By (16) and (201, the left-hand side of eqn. (19) becomes 

The right-hand side of (19) becomes 

Considering eqns. (151, (18) and (Zl), we have 

(23) 
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where #I is the value of 4 on S,. Similarly, we have 

42 = -AAH,+A, 
1 

(25) 

where & is the value of 4 on S, and A, is the area of S,; 6,(t) is the 
surface average value of O(r, t) over surface S, defined as follows. 

Substituting eqns. (22)~(25) into (191, we get 

(27) 

We assume no physical phase change or chemical reaction in D,. Then, 
substituting 

AH-, = (Tf- Ti)C, 

into (27) and rearranging, we get 

p?(t) dt = (T, - 7’Jk, i-k&J, 

where 

(28) 

(29) 

(30) 

(31) 

(32) 

Cl 
i 

1 
k,= 

v, DI IIl rfi d7-41 

where V, = volume of D, and 

k,= 
f42-d-5) 

WJ 

w2 - 
i I an2 s, 

When no physical phase change or chemical reaction occurs in D, 

AH, = (Tf - T,)C, 



16 S. Tanaka / Thermochim. Acta 205 (I 992) 11 - 18 

Then eqn. (29) becomes 

(33) 

Constants k, and k, are determined by the geometry and thermal physical 
properties of D,, and are independent of those of D,. 

TEMPERATURE CHANGE CAUSED BY CALIBRATING THE ELECTRICAL 
POWER 

When the temperature of the surrounding thermal bath TB is held 
constant and a finite extent of calibrating electrical power 

p(t) # 0, O<t,<t<t2 
(34) = 0, t<t,, t,<t 

is produced in D,, a change in temperature in D, and D, is caused. 
Referring to previous boundary-initial conditions (9)-(131, we have the 
conditions of 0(r, t) = T(r, t> - T, in the case of constant T, as follows. 

e(r, t) = 0, r~DuuS~ (35) 

K,v28 = de/at, rEDi (36) 

(37) 

When t < 0, we set 

e(r, t) = 0, t<O 

We assume a zero approaching value of f$r, t) 

lim e(r, t) = 0 
t-m 

(39) 

PO) 

We also assume a finite value (14) and 

WC = /p(t) dt 
0 

Integrating eqns. (35)-(38) with respect to t from 0 to ~0, we have 

J(r) = 0, ~ED~US~ 

K,vJ(r) = 0, r-ED, 

(42) 

(43) 
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Here we set 

iAH, =p-$ dt =0 

and 

17 

(44) 

(45) 

(46) 

(47) 

because we assume no changes in the physical and chemical properties of 
D, and D, before and after the input of electrical work. 

Application of Green’s theorem to D, enclosed by S, and S, gives the 
same form as that in eqn. (19), which is rearranged in this case as follows. 
From eqns. (20), (42) and (43), the left-hand side of (19) becomes 

~~~ 
= 0 (48) 

o1 

From eqns. (211, (42), (44) and (451, the right-hand side of (19) becomes 

where s,(t) is defined by eqn. (26). 
From eqns. (19), (48) and (491, we get 

=&WC 

where k, is defined by eqn. (31). 

EVALUATION OF THERMAL PROPERTIES 

(49) 

(50) 

When the temperature of the surrounding thermal bath of a heat 
conduction calorimeter is changed in a stepwise manner, measurement of 
the surface average temperature over the outside surface of the sample as a 
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function of time and the use of the equations previously derived give the 
thermal properties of domains D, and D,. 

Equation (29) gives the enthalpy difference AH, of D, between temper- 
atures Ti and T,, and (33) gives the heat capacity C, of D,. The value of k, 
is determined by the measurement when D, is empty and the temperature 
TB is changed in a stepwise manner; k, is determined by producing 
electrical work W, of a known level of energy in D, and using eqn. (501. If 
k, is given by eqn. (311, the value of k, and the geometry of D, give the 
thermal conductivity A, of Dr. 

It is noteworthy that the validity of all the equations previously described 
does not depend on the mode of the stepwise temperature change of the 
surrounding thermal bath, a(t). 
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