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Fast method for reaction kinetics determination under 
linear heating of reacting substance 
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(Received 3 February 1992) 

A method has been developed for simultaneous evaluation of activation energy and 
kinetic function using rather small amounts of non-isotherms experimental data. 

INTRODUCTION 

Let us assume that heating is linear and has a heating rate w, and the 
degree of conversion may be calculated from the available experimental 
data, e.g. from mass losses. Therefore, the degree of conversion q is 
determined experimentally as a function of time. Our approach gives an 
answer to the question as to whether or not the process under investi- 
gation may be represented as a single-stage one with a kinetic function 
q(q); in other words, whether it may be described by 

fi = k exp(-EIRT)v(q) v(O) =o T=T,+ot 

If the answer is positive then the parameters k and E could be 
estimated and the kinetic function could be determined. Because cp(q) is 
supposed be within a class of functions 

e?) = crt + 4”U - rt)” 

where n = 1, 2, 3; k = 0.1; LY << 1, the method provides a possibility of 
evaluating k, E, n, and k simultaneously. It should be noted that the same 
approach may also be applied in the case of more complicated kinetic 
functions, e.g. for k > 1 or k < 0 and fractional n. 
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DESCRIPTION OF THE METHOD 

Our method is based on the well known approximation [l-4,6] for the 
integral 

I 
‘kexp(-E/RT(t)) dr-R?*2(t)kexp(-E/RT(t))(l -2RT(t)/E)/oE (1) 

0 

where T = T, + wt. 
Neglecting the term 2RTfE, we shall obtain a less precise but more 

convenient approximation 

J 
I 

k exp(-E/RT(r)) dr = k exp(-EIRT(t))RT’(t)/cuE 
0 

(2) 

The relative error of eqn. (2) does not exceed 2RT(t)/E. It is simple to 
see that this value does not exceed the accuracy of thermoanalytical 
experiment, and hence the use of eqn. (2) seems to be mathematically 
correct. Let us exploit eqn. (2) to study the reverse problem. 

Assume the process studied to be a single-stage one, then the reaction 
is described by the differential equation 

ti = K(+P(rl) q(O) = 0 (3) 

where K(t) = k exp(-EIRT). Now let us perform separation of variables 
in eqn. (3); denoting I,” c+$u)-’ du by x(q), we rewrite eqn. (3) in the form 
k(q) = K(T(t)). Using the definition of x(q), from eqn. (2) we obtain 

x(q) a ~(t~~~*/~~ = ~(~)~T=/~~ (4) 

Integration of eqn. (4) over the interval (Q, q) gives 

ln(x(rl)lx(rlO)) = E(T - &)/TGR (5) 

where To is the temperature corresponding to the degree of conversion no. 
The relative error in eqn. (5) does not exceed 2RT(t)/E, while Q may 
have any non-zeroth value. We may write eqn. (5) in the form 

TT,R ln(~(~)/~(~~))/(T - G) = E (6) 

Values of T, To, q. and ?I from the left-hand side of eqn. (6) are known 
from experiment. Hence, further study of the reverse problem is reduced 
to searching for a kinetic function rp(q) within the given class that 
provides the relationship 

TT,R ln(x(q)lx(vo))l(T - G) = const (7) 

It should be outlined that there is an analogy with isothermal data 
treatment in the case when the differential curve i(t) could not be 
obtained. Indeed, in this case, -i = 0, and we arrive at x(q) = t const. 
Thus to solve the reverse problem one needs to find a kinetic function for 
~t~)/~ = const. The possibility of this analogy has been mentioned in ref. 
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5, However, isothe~al experiment does not provide information on the 
temperature dependence of reaction rate; but in the case of linear heating, 
by using similar procedures we are able to obtain the activation energy E 
together with a kinetic function 

An algorithm of cp(q) construction is very simple when cp(q) = (l- 
q)“, i.e. k = 0. Taking an arbitrary value of yco, we obtain that function 
F&(q) for k = 0 

F ,,n = T#& In ([ (1 - u)-““du/[ (1 - u)-““du)/(T - T,) 

increases at tt > rto, decreases at n <no, and remains constant at II = rt,, 
(Fig. 1). 

The solution to the direct problem 

Q = k exp(-E/RT)(l - 17)“” 

where T=T1+ot, E=ZOkcal, tz,,=2, o=O.O4Ks-‘, k=lOs-‘, T,= 
280K were taken as experimental data in Fig. 1. 

Therefore, condition (7) (in our notation Z$,,(~) = const) holds true 
only for n = n, = 2 (see Fig. 2). Moreover the value of the constant 
21.65 kcal gives an estimate for activation energy E. Note that upon 
substitution of eqn. (1) by eqn. (2), a value of E from eqn. (7) shows 
some surplus, the value of which may be estimated, e.g. from max(l- 
2RT(t)/E) at the temperatures under consideration. Multiplying the 
constant obtained by this correction factor (which is equal to 0.95 for the 

Fig. 1. Data treatment in the case of a single-stage reaction (k = 0, n,, = 2): curve 1, plot 
of F,,(r])(n <no); curve l’, plot of F,,,(q); curve 2, plot of F,,,(q) (n = n,); curve 2’, plot 
of F,,,(q); curve 3, plot of F,,,(q) (n >n,); curve 3’, plot of F,.?(q). 
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0 0.2 0.4 0.6 0.8 1.0 3 

Fig. 2. Curves ~~,~(~) for n = 1, 2, 3 and straight lines l,, 2,, 3, parallel to the q axis and 
approximating ~~,~(~) in the best way. 
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Fig. 3. Data treatment in the case of autocatalytic reaction (k = 1, no = 2): curve 1, plot of 
F,,(q); curve l’, plot of F,,,(q) (n <no}; curve 2, plot of I&(q); curve 2’, plot of &(rl) 
(n = no); curve 3; plot of F0.3(rj); curve 3’, plot of F,,,(q) (n > no). 
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data of Fig. l), we finally obtain E = 20.567 kcal, which differs from the 
true value of 20 kcal by 2.8%. Figure 3 represents the procedure for the 
reverse problem studied in the case of an autocatalytic reaction. Here a 
solution to the direct problem 

q = k exp(-EIRT)(q + a)(1 - r])“@ 

where E=20kcal, n0=2, k=107s-‘, o=O.O4Ks-* and a=O.Ol was 
taken as the experimental data. In Fig. 3, these data (curves l-3) are 
treated as a simple reaction, i.e. curves 1, 2 and 3 are the plots of rj;-,Jq) 
for k = 0 and n = 1, 2, 3 respectively. The shape of these curves is seen to 
differ markedly from that shown in Fig. 1. It implies that the process 
studied cannot be described as a simple reaction. In Fig. 3 (curves l’-3’), 
the data are treated as an auto~atalytic process with various values of n. 
For k = 1, we obtain 

= T&In [s” (1 - u)-““(u + a)--’ d~/~~*(l- ~$-~“(u + a)-’ d~]/(T - Ir) 
0 0 

Then condition (7) has the form F,,,(q) = const. Curves l’, 2’ and 3’ in 
Fig, 3 represent the plots of functions F1,,(q) at IZ = 1, 2, 3; moreover 
condition (7) is fulfilled only for n = q, = 2. 

As seen from Fig. 3, the plots of unctions F1+(q) for k = 0, 1; ra = 1, 2, 
3 form two fans: the upper one corresponds to simple functions (or k = 0) 
and for the lower fan k = 1. It may be shown that the fan of simple 
functions is always above the fan for autocatalytic functions. 

The algorithm for the dete~ination of q(q) (parameters k and n) and 
the activation energy E is generally as follows: for experimental data q, 
find &,(q) for all it and k values under consideration, and then determine 
those II and k values for which F,,,(q) = const. This constant gives a value 
of the activation energy E. The process could easily be formalized, as may 
be illustrated (see Fig. 2) with curves l-3 in Fig. 1 taken as an example. 
Comp~son of curves l-3 may be reduced to a comparison of straight 
lines la-3*, obtained upon linearization of appropriate curves. Then the 
problem is reduced to choice of such k and ra values that the function 
F&(q) is approximated by a straight line parallel to the 11 axis. Note that 
some sets of points {a,} may be approximated by a straight line parallel to 
the q axis by using the zeroth order approximation c = O.S(max, ai + 
mini ai). As a measure of deviation of points {ai} from the straight line, 
let us use an average deviation of the points from the line or dispersion 

DC = 
di 

2 (q - c)‘,(m - 1) 
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Fig. 4. Values of &,,(q) for different values of qo: q0 = 0.01 (O), q. = 0.1 (0), q. = 0.5 

(A). 

where m is a number of experimental points. For curve 2, in Fig. 2, this 
separation is considerably smaller (by two orders of value) than that for 1, 
and 3,. 

There exists an additional opportunity to prove or deny the result 
obtained for some certain q. values. As it followed from eqn. (5) relation 
Fk,_(q) = const is stable with respect to Q (see Fig. 4). 

The values of F&q) for the data of Fig. 1 (curves l-3) caIculated for 
various qa values are presented in Fig. 4, where curves l-3 are the plots 
of I&,(q) for q,,= 0.01; curves 1o-30 are of FO,,(~) for Q,= 0.01; and 
curves l.-3. are of FO,,(v) for q0 = 0.5, the constant value is seen to 
remain unchanged (curves 2, 2 0, and 2, are coincident); the remaining 
curves are shifted proportionally to qo. 

TREATMENT OF EXPERIMENTAL DATA 

The method was tested for calcium oxalate dehydration at varied 
heating rates. The experimental data were taken from ref. 7. Nine values 
of r/=0.1, 0.2, . . . . 0.9 were treated. The results of treatment for 
o = 2.353 K min-’ are collected in Table 1. Here y1 is an assumed power 
of kinetic function rp(q) = (1 - 11)“. The straight line equation ap- 
proximating I-&(q) is given by C,, = C,(q); DC, denotes a dispersion of 
points F,,,(q) with respect to the straight line C,. From a comparison 
between DC, values cafculated for Q = 0.5, we see that condition (5) 
holds true for it = 0.5 and yt = 0.4. Increase in Q, (q. = 0.6) shows that C,., 
undergoes no shift, while dispersion of points with respect to C,,, is 



A. N. Peregudov, T.S. Luk ~~nova~he~och~~. Acta 213 (1993) 305-312 311 

TABLE ‘1 

Dependence of dispersion on reaction order n at degree of conversion q0 = 0.5 and 0.6 

n 

TlO 1 2 0.5 0.4 0.25 

0.5 cl 3.756 6.22 2.839 2.680 2.457 
ml 0.452 1.835 0.045 0.037 0.108 

0.6 C” 3.946 7.01 2.83 2.64 2.37 
DC, 0.425 1.684 0.065 0.022 0.06 
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0.4 - k! 
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Fig. 5. Conversion curves for calcium oxaiate dehydration: 0, experimental; 0, 
calculated. 

increased. Thus we obtain finally II = 0.4, i.e. q(q) = (1 - t~)o.~, C,., = 
2.64 x 104, and upon correction (1 - 2RTIE) = 0.93, we arrive at E = 
24920. Comparison with the reported [7] data n = 0.4 and E = 23 x IO3 
shows that inaccuracy of the E determination is about 7%. Figure 5 
presents the experimentally obtained and calculated degrees of conversion 
which are seen to be in excellent agreement. 

In conclusion it should be noted that a computer program has been 
compiled for FkJq) determinations by using the experimentally obtained 
points for degree of conversion. The scheme of computation procedure 
has been presented merely for the sake of illustration. 

CONCLUSIONS 

The method suggested provides a means for (i) obtaining kinetic 
information by using a small number of experimentally obtained points 
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(i.e. it is a fast method), (ii) using only some fraction of an experimentally 
obtained curve, (iii) determining both kinetic function and activation 
energy simultaneously, (iv) taking into consideration kinetic functions of 
any type and thus extending the range of parameters n and k (fractional ra, 
k>l, k<O), 
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