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Abstract 

A new evaluation method for determining the kinetic parameters of a chemical reaction 
from DSC measurements is presented. This method evaluates a series of thermograms at 
different heating rates. The activation energy, the frequency factor and a general 
description of the concentration dependence of the reaction rate are obtained. Theorical 
DSC curves are also evaluated and the results obtained are compared with the prescribed 

parameters. 

LIST OF SYMBOLS 

c,,,/mol 1-l 

Da, 

Da(T) 

E /J mol-’ 

F(X) 
G(X) 
I(X) 
m/g 
QIW 
QwlJ 
rlmol-’ s-’ 
r,,/moll-’ SC’ 
R/J molF’ K-’ 
tls 
TIK 
X 

initial concentration of the reference component 
Damkiihler number defined in eqn. (16) 
temperature-dependent Damkiihler number defined in 
eqn. (17) 
activation energy 
function defined in eqn. (10) 
function defined in eqn. (13) 
function defined in eqn. (15) 
initial sample weight 
heat flow 
total evolved heat of reaction 
reaction rate 
initial reaction rate extrapolated to infinite temperature 
gas constant 
time 
temperature 
conversion 
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Greek letters 

p/K s-’ 
Ah/J g’ 
Ah/J g-’ 

Q(X) 

heating rate 
reaction enthalpy per gram 
mean reaction enthalpy per gram 
dimensionless description of the concentration depend- 
ence of the reaction rate 
time unit (1 s) 
stoichiometric coefficient of the key component 

1. INTRODUCTION 

The use of thermokinetic data to evaluate kinetic parameters of 
solid-state or liquid-state reactions has been previously investigated by 
several authors [l-5]. Well known evaluation methods have been de- 
veloped by Borchardt and Daniels [l], Freeman and Carroll [2] and Coats 
and Redfern [3]. These methods calculate the activation energy, frequency 
factors and reaction order from a single thermogram. 

As shown by Hentschel [6], there are several problems associated with 
the determination of reaction parameters from a single thermokinetic 
thermogram. From evaluations of theoretical thermograms, he confirmed 
that these evaluation methods are not suitable for determining real 
measurement reaction parameters, when one takes into account realistic 
errors. Another disadvantage of these evaluation methods is that, in 
general, real reaction cannot be adequately described by only one reaction 
order. 

Based on these disadvantages a method is presented here which 
evaluates a series of thermograms at different heating rates but with the 
same initial composition. Furthermore a general description of the 
concentration dependence of the reaction rate, which may contain more 
than one parameter, is used. 

2. THEORY 

2.1. Evaluation of an ideal DSC measurement 

The following assumptions form the basis of the evaluation. 
1. There is only one exothermic, irreversible reaction. Other thermic 

effects do not exist. 
2. The sample is heated at a constant heating rate of /3 = dT/dt. 
3. The reaction rate equation can be separated into a temperature- 

dependent contribution, due to the Arrhenius equation, and into a 
concentration-dependent contribution. The type of concentration depend- 
ence is not specified but will be determined by the measurements. 
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For a general description, the conversion X is used instead of the 
concentration. The heat developed by the reaction can be described by 

(1) 

Qt,, is the total heat evolved by the reaction which can be determined by 
integration of Q(t). The heat of reaction per gram Ah can be calculated 
from Qtot and the initial amount of sample m 

Q Ah =fOt 
m 

(2) 

The conversion and its derivation can be calculated from the measured data 
Q(t) by eqn. (1). F rom this derivation, the reaction rate Y for a closed 
system (batch-reactor) can be obtained by 

dX (-21~)~ _p 
dt - CA,, (3) 

where vA iS the stoichiometric COeffiCient and c& iS the initial COnCentratiOn 

of the key component A. If there is a two-component reaction mixture, the 
key component A has to be selected such that X = 1 at full conversion. 

Using assumption no. 3, the reaction rate can be expressed as 

r=r,e -,!?IRT Q(X) (4) 

In this equation, r,, is the initial reaction rate extrapolated to infinite 
temperature. D(X) is the dimensionless description of the concentration 
dependence of the reaction rate using the variable conversion X; when 
X =O, Q(O) = 1; and when X = 1, a(l) =O. The aim of a series of 
measurements is to determine (-Ah), E/R, ror and the function a(X). 

2.2. Determination of the activation energy 

The determination of the activation energy is based on empirical results, 
which were obtained from a large number of simulated &(t) curves using 
the above equations [4]. It was discovered that for a given set of data and a 
given type of function m(X), the conversion X, at the maximum of heat 
production was practically independent of the heating rate p. Therefore, 
the corresponding temperature T, at the maximum heat flow (im(t) varies 
at different heating rates as a function of the activation energy. Thus the 
activation energy obtained from an Arrhenius diagram of ln(Qm/Qtot) vs. 
l/T, corresponds to the equation 

lnkf E 
-= -- 

+ ln (-vA)rgoc@(Xm)f 

Q tot RTm CA0 
(5) 
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The time unit z” = 1 s was introduced to obtain dimensionless expressions 
within the logarithm. The determination of the activation energy with a 
similar diagram was first described by Kissinger [5]. 

The method presented here, which uses a full series of measurements at 
different heating rates, will lead to reliable values of E. 

2.3. Principles of the kinetics determination 

From a theoretical point of view, it should be possible to determine 
(D(X), with the exception of the constant factor, from 

Q 

@(x) = (2 eE’Rr tot 
(6) 

because the activation energy has already been determined. In principle, 
the constant factor can be determined by extrapolation to the zero 
conversion where @(O) = 1. 

In practical cases, no meaningful data are obtained from this method. 
This is due to the dominant influence of the exponential term on this 
calculation method. A sufficiently accurate determination can only be 
obtained from the reaction rate law in an integrated manner. 

From the mass balance eqn. (3), using eqn. (4) and a constant heating 
rate /3 = dT/dt, one obtains 

dX (- ~Jrom 
dT = c,,,p e -E’RT @(X) 

By integration of the temperature-dependent contribution, one gets an 
exponential integral. If EIRT > 10, this exponential integral can be 
approximated by analytical function with sufficient accuracy [7]. The result 
is 

I 

*dX= (-vA)rO,T epE’Kr 

0 a(x) c/a,,@ WRT) + 2 
(8) 

In this solution the exponential term can be substituted by eqn. (6) 

T 

@(x)11*?+%) = &[(E,RT) + 2, (9 

In contrast to eqn. (6), this equation contains only a nearly-quadratic 
temperature dependence and is easier to evaluate. The right-hand-side of 
this equation contains only expressions which are already known (E, QtO,) 
or are obtained from measurement (T, Q). So the expression 
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can be calculated. This function F(X) should be the same for all 
measurements at different heating rates, provided that the measurements 
are carried out with a reaction mixture of the same initial composition. 
Therefore, from these measurements and from 

X(t) = $ j-’ (i(t) dt 
tot 0 

(11) 

a mean curve of the function F(X) is obtained. 
The problem to be solved is to recalculate Q(X) from eqn. (10). This, 

however, is a mathematical problem. Differentiating eqn. (10) 

1 (12) 

The boundary conditions are at X =0: Q(O) = 1, F(0) = 0, 
(dF(X)/dX),=,, = 1; at X = 1: Q(1) = 0, F(1) = 0. Thus, if F(X) can be 
approximated by a proper function, @(X) can be calculated by numerical 
integration. In order to approximate F(X), it is useful to first look at the 
common practical case of a second-order reaction, i.e. Q,(X) = (1 - X)’ or, 
from eqn. (lo), F,(X) = X(1 - X). 

From several practical calculations, it was found that the best way of 
calculating Q(X) is not from F(X) but its a deviation from the case of 
second-order reaction 

G(X) = 
F(X) -X(1 -X) 

X2(1 - X) (13) 

is approximated by a third-degree polynomial. This is sufficient when the 
actual reaction is nearly second-order. But for other kinetics G(X) is 
generally curved in such a manner that it is more useful to approximate 
l/G(X) by a polynomial. If G(X) is known, @(X) can be calculated from 
eqn. (12) (see Appendix) by 

Q(X) = (1 - X)*(1 + XC(X)) e’@” 

where 
(14) 

G(X) 
z(X) = lx (1 - X)(1 + XC(X)) 

dX (15) 

is calculated by a numerical (Runge-Kutta fourth-order). If G(X) = 0, one 
obtains a second-order reaction type. 

With the already known intercept of the Arrhenius diagram and the 
value of @(X,), one obtains the dimensionless Damkohler number 
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3. EVALUATION 

PROGRAM 
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OF SIMULATED DSC CURVES BY A COMPUTER 

Based on the above derivation of the evaluation method, the computer 
program TherKin 2.0 was developed. For the evaluation, the DSC curves 
are needed as ASCII data with the initial sample weight, heating rate, 
number of measured points and the measured values of T and &. 

In order to check the precision of the computer program, simulated DSC 
curves were evaluated. The fixed values of the kinetic parameters are 
Da, = lo”‘, E/R = 10 000 K, Ah = -100 J g-l, m = 30 mg, and the function 
a(X) is B,(X) = (1 - X)’ or a2(X) = (1 + 10X)(1 - X)’ where al(X) 

TABLE 

Characteristic thermogram data of the kinetic type with a,(X) = (1 - X)’ 

P/K min-’ W'C &,/Q,<,,/10-3s-' X, Q,&nJ Ah/Jg ’ 

64.5 0.3878 0.468 -3005.4 -100.18 

72.1 0.7429 0.469 -3005.9 -100.19 

76.6 1.0863 0.467 -3005.6 -100.19 

80.0 1.4223 0.468 -3005.3 -100.18 

82.6 1.7527 0.468 -3005.0 -100.17 

84.7 2.0790 0.469 - 3004.4 -100.15 

86.6 2.4017 0.468 -3003.9 -100.13 

88.2 2.7214 0.468 -3003.4 -100.11 

89.6 3.0385 0.467 -3002.9 -100.10 

TABLE 2 

Characteristic thermogram data of the kinetic type with az(X) = (1 + 10X)(1 - X)’ 

P/K min-’ T,I”C ~,,/Qt<,,/10-3 s ' X, Q,&nJ Ah/Jg ’ 

52.8 0.7461 0.481 -2981.6 -99.39 

59.9 1.4264 0.482 -2991.3 -99.71 

64.1 2.0847 0.479 -2994.6 -99.82 

67.2 2.7291 0.480 -2996.3 -99.88 

69.7 3.3631 0.482 -2997.3 -99.91 

71.7 3.9890 0.481 -2998.1 -99.94 

73.4 4.6082 0.480 -2998.4 -99.95 

74.9 5.2216 0.480 -2998.9 -99.96 

76.3 5.8300 0.482 -2999.2 -99.97 
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TABLE 3 

Values of the determined kinetic parameters 

Type of kinetic EIRIK Da, h/J g-’ 

a,(x) = (1 -X)’ 10029 f 14 1.107 x 10’” - 100.15 

@z(X) = (1 + 10X)( 1 - X)’ 9981 f 14 0.944 x 10’” -99.84 

represents a second-order reaction, and @(X) an autocatalytic reaction. 
The results obtained are shown in Tables 1 and 2. It can be seen that the 

conversion X, is practically independent of the heating rate. With these 
results, the activation energy or E/R values can be obtained from the 
Arrhenius diagram. Table 3 contains the determined values of the kinetic 
parameters E/R, Da, and Ah. 

The obtained values of Da, deviate clearly from the prescribed 
Da,. This results from the extrapolation of ror to infinite temperature, so 
that a small deviation of E/R causes a wide deviation of Da,. If one 
uses a temperature which is more realistic of the reaction (e.g. 
350 K), the determined values of the temperature-dependent Damkohler 
number 

Da(T) = Da, emEIRT (17) 

deviate less than 2% for Q,(X) and less than 0.5% for $(X) from the 
prescribed Da(T). Figures 1 and 2 show the comparison between the 
expected and the calculated Q(X) curves. 

0.0 0.2 0.4 0.6 0.8 1.0 

X- 
Fig. 1. Comparison between the calculated and expected a,(X) = (1 - X)‘. 
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2.0 + 

0.0 

0.0 0.2 0.4 0.6 0.8 1.0 

X- 
Fig. 2. Comparison between the calculated and expected a*(X) = (1 + 10X)(1 - X)‘. 

4. CONCLUSIONS 

The comparison between the calculated and prescribed kinetic para- 
meters demonstrates that the presented evaluation method can recalculate 
these prescribed parameters, at least for theoretical DSC curves. 

A real measured DSC curve has to be corrected by known methods of 
correcting a curve containing only the chemical reaction. This correction of 
real DSC measurements, however, is the main problem in the evaluation 
from DSC measurements and will be discussed in Part 2 [8]. 

An important assumption of the presented evaluation method is the 
separation of the reaction rate r. If the measured DSC peak contains more 
than one reaction, then the reaction rate is not separable. In this case the 
evaluation method fails. 
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APPENDIX: DERIVATION OF EQN. (14) 

By differentiating eqn. (13) one obtains 

dF(X) 
~ = 1 + X[ G(X) - 2(1+ XC(X)) + (1 - X) &XC(X))] 

DX 

If eqn. (Al) is substituted in eqn. (12) with eqn. (13), one obtains 

(Al) 

dIn@(X) d 

dX 
= $n(l + XC(X)) + In(1 -WI + Cl _ x)g(f;G(x)) 

642) 
From the integration of eqn. (A2) with the initial condition @(O) = 1, one 
gets eqn. (14). 


