Isobaric vapor-liquid equilibria in the mixtures of 1heptyne + butanal, 1-octyne + 3-octyne, +ethylbenzene and +dibutyl ether, 2-octyne + dibutyl ether and +1butanol, and 3-octyne + 1-octene

H. Kirss, E. Siimer * and L. Kudryavtseva Institute of Chemistry, Estonian Academy of Sciences, Tallinn (Estonia) (Received 11 March 1993; accepted 11 March 1993)

Abstract

For seven binary systems containing isomeric alkynes, the isobaric variations of the boiling temperature with liquid-phase composition were determined using a semi-micro ebulliometer over the entire composition range. The experimental data were used to fit the adjustable parameters in the Redlich-Kister and Wilson equations. The new UNIFAC interaction parameters were determined separately for the terminal and internal triple-bond groups.

INTRODUCTION

In recent papers [1, 2], the vapor-liquid equilibria (VLE) and enthalpies of mixing H^{E} were investigated for several binary systems containing isomeric alkynes. Analysis of the results in terms of the UNIFAC group contribution [3] indicated a clear differentiation between the terminal and internal triple-bond groups for both VLE and H^{E} calculations.

The present paper continues the investigation initiated earlier by reporting the VLE data for 1-octene-3-octyne, 1-octyne-3-octyne, 1-octyne-ethylbenzene and 1-butanol-2-octyne at the pressures 760, 600, 400 and 200 torr, and for butanal-1-heptyne, 1-octyne-dibutyl ether and 2-octyne-dibutyl ether at 600, 400 and 200 torr.

EXPERIMENTAL

The isomeric alkynes were synthesized [4] and fractionally distilled in a 50-plate Teflon bristle-rotor column [5] to a purity of more than 99.5 mass%, as detected by gas chromatography (GC) on Carbowax-20M and squalane capillary columns using a hydrogen flame ionization detector. All

^{*} Corresponding author.

measurements were made with the alkynes recently purified. Two different samples of 1-octyne were used. Pure-grade butanal was distilled and had a purity of 99.9 mass%, according to GC analysis. The dibutyl ether and 1-butanol obtained from Reakhim (Kharkov, USSR) in high purity forms (Puriss Grade) were used without further purification. For both compounds, the GC analysis failed to show any significant impurities. The 1-octene and ethylbenzene used in the present measurements were the same as those employed in ref. 1.

Details of the experimental determinations of the boiling temperature have been given elsewhere [6]. The accuracy of these determinations is ± 0.05 K. All the mixtures were prepared by weight. The liquid mole fraction X_i after correction for evaporation, was evaluated with an accuracy of better than 1×10^{-3} . The composition of the equilibrium vapor phase was obtained by calculation using the Redlich-Kister, Wilson and UNIFAC equations for the activity coefficients. Economy of experimental effort was achieved by an avoidance of sampling and analysis of samples. The vapor composition was thus calculated and the liquid mixtures were made up by mixing measured quantities of pure liquids.

RESULTS AND DISCUSSION

Table 1 gives the $T-X_1$ data for the seven binary systems. In order to avoid a restriction to certain compositions, all the experimental values for each system were fitted by the three-parameter Redlich-Kister and Wilson equations using the least-squares method, which is non-linear for the Wilson equation. The advantage of the latter equation is that it may be applied to multi-component systems by using the binary data alone, while the Redlich-Kister equation is known as one of the best means of describing binary VLE data. The results obtained in a binary data fit, together with the values of mean deviations δP , are given in Table 2.

The mean relative deviation is determined by

$$\delta P\% = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{P_{\text{exp}} - P_{\text{calc}}}{P_{\text{exp}}} \right|_{i} \times 100$$
(1)

where n is the number of experimental points.

The information on the boiling temperatures of pure liquids at different pressures was obtained in the same semi-micro ebulliometer. The experimental results given in Table 1, together with the data on the mixtures, were correlated with pressure by means of the Antoine equation in the form

$$T/K = \frac{B}{A - \ln P/\text{torr}} - C$$
⁽²⁾

The results of the determination of the constants A, B and C, and the mean deviations δP , are shown in Table 3.

Experimental $T-X_1$ data for binary systems at different pressures

<i>X</i> ₁	Boiling point in K for pressures in torr							
	200	400	600	760				
1-Octene(1))-3-octyne(2)			244-24 - 2				
0.000	364.49	384.77	398.01	406.34				
0.199	361.44	381.80	395.08	403.37				
0.318	359.93	380.29	393.53	401.81				
0.333	359.77	380.13	393.41	401.73				
0.414	358.76	379.11	392.39	400.66				
0.502	357.69	378.05	391.31	399.58				
0.680	355.81	376.12	389.36	397.65				
0.818	354.35	374.70	387.94	396.22				
1.000	352.70	372.99	386.20	394.45				
1-Octyne(1))-3-octyne(2)							
0.000	364.49	384.77	398.01	406.34				
0.189	363.17	383.45	396.71	404.95				
0.289	362.45	382.72	-	404.27				
0.298	-	382.76	395.99	404.27				
0.331	362.19	382.45	_	_				
0.473	361.19	381.41	394.60	402.84				
0.592	360.41	380.62	393.79	402.00				
0.711	359.64	379.84	392.99	401.19				
0.804	359.04	379.21	392.38	400.58				
1.000	357.85	378.01	391.13	399.34				
Butanal(1)-	-1-heptyne(2)							
0.000	333.87	352.81	365.23					
0.148	330.00	349.10	361.70					
0.295	326.23	345.36	357.95					
0.501	321.43	339.92	352.36					
0.701	317.77	336.07	348.18					
0.887	313.89	332.00	343.95					
1.000	311.84	329.81	341.69					
1-Octyne(1))-ethylbenzene(2)							
0.000	365.92	387.01	400.75	409.32				
0.166	364.39	385.29	398.95	407.46				
0.234	363.76	384.58	398.21	406.70				
0.318	362.98	383.70	397.27	405.74				
0.444	362.05	382.58	396.12	404.51				
0.551	361.08	381.63	395.03	403.35				
0.697	359.97	380.38	393.69	402.00				
0.812	359.17	379.46	392.69	400.93				
0.842	358.91	379.15	392.40	400.65				
1.000	357.74	377.98	391.09	399.26				

<i>X</i> ₁	Boiling point in K for pressures in torr							
	200	400	600	760				
1-Octyne(1)-dibutyl ether(2)							
0.000	372.16	393.07	406.71					
0.162	369.47	390.28	403.90					
0.345	366.67	387.32	400.85					
0.526	364.09	384.64	398.02					
0.693	361.84	382.20	395.53					
0.832	359.83	380.11	393.36					
1.000	357.74	377.98	391.09					
2-Octyne(1)-dibutyl ether(2)							
0.000	372.16	393.07	406.71					
0.174	371.60	392.45	406.08					
0.323	371.05	391.82	405.34					
0.511	370.49	391.17	404.68					
0.681	370.03	390.66	404.08					
0.854	369.42	390.01	403.39					
1.000	369.02	389.50	402.84					
1-Butanol(1)-2-octyne(2)							
0.000	369.02	389.50	402.84	411.18				
0.144	359.65	379.20	382.38	400.91				
0.260	356.71	375.42	387.83	395.39				
0.347	355.51	373.65	385.47	392.90				
0.430	354.76	372.70	384.30	_				
0.565	354.36	371.85	383.19	390.24				
0.696	354.27	371.46	382.56	389.46				
0.799	354.61	371.60	382.55	389.34				
0.888	355.54	372.22	382.98	389.66				
1.000	357.51	373.82	384.32	390.82				

TABLE 1	(continued)
---------	-------------

The new UNIFAC group interaction parameters determined as described by Fredenslund et al. [3] are given in Table 4. The other interaction parameters used have been reported by us [2] and by Gmehling et al. [7].

Table 5 gives the values of the mean deviation of experimental pressures and those calculated by UNIFAC for five of the systems studied. The δP values obtained are generally higher than those shown in Table 2, particularly for the system containing 1-butanol. The best description of the latter is provided by the Redlich-Kister equation.

The ΔT values presented in Table 6 for the two remaining systems, 1-octene-3-octyne and 1-octyne-ethylbenzene, indicate that the UNIFAC model gave a fairly satisfactory prediction of the boiling temperatures.

To verify the applicability of the correlations used, the composition of the azeotropic mixture was calculated. An azeotrope was only found for

Parameters of the Redlich-Kister (b, c, d) and Wilson $(\Lambda_{12}, \Lambda_{21})$ equations and the deviation of experimental pressures from the calculated values $(\delta P \text{ in } \%)$

P/torr	b	с	d	δΡ	Λ ₁₂	Λ_{21}	δP			
1-Octer	1-Octene(1)-3-octyne(2)									
200	0.0517	-0.0091	0.0320	0.066	0.8308	1.1268	0.098			
400	0.0410	-0.0029	0.0168	0.048	0.9739	0.9840	0.059			
600	0.0397	-0.0030	0.0167	0.053	0.9666	0.9926	0.066			
760	0.0383	-0.0052	0.0089	0.061	0.8081	1.1694	0.062			
1-Octy	ne(1)-3-oct	tyne(2)								
200	-0.0023	0.0080	-0.0007	0.032	1.4963	0.6047	0.030			
400	-0.0070	0.0157	-0.0081	0.072	0.8797	1.1368	0.112			
600	-0.0044	0.0199	-0.0156	0.060	1.7094	0.4811	0.080			
760	-0.0037	0.0192	-0.0062	0.079	0.9234	1.0829	0.140			
Butana	l(1)-1-hep	tyne(2)								
200	-0.1246	-0.0608	-0.1568	0.277	1.7195	0.5816	0.526			
400	-0.1276	0.0007	-0.1200	0.408	1.5201	0.7015	0.473			
600	-0.1507	0.0131	-0.1062	0.319	1.0380	1.1289	0.392			
1-Octy	ne(1)-ethy	lbenzene(2)								
200	-0.0009	-0.0070	-0.0131	0.088	1.0803	0.9257	0.105			
400	0.0086	0.0012	-0.0059	0.063	1.0965	0.9006	0.066			
600	0.0018	0.0034	-0.0003	0.057	1.3550	0.6971	0.059			
760	-0.0008	0.0043	-0.0082	0.046	0.9398	1.0640	0.055			
1-Octyr	ne(1)–dibu	tyl ether(2)								
200	-0.0463	-0.0297	0.0059	0.093	1.3749	0.7273	0.168			
400	-0.0392	-0.0148	0.0236	0.108	1.3152	0.7604	0.136			
600	-0.0432	-0.0104	0.0078	0.077	1.3397	0.7464	0.088			
2-Octy	ne(1)–dibu	tyl ether(2)								
200	0.0013	-0.0040	-0.0025	0.084	0.6800	1.3799	0.085			
400	0.0019	-0.0068	-0.0216	0.063	1.0534	0.9493	0.084			
600	0.0013	-0.0024	-0.0252	0.084	1.0717	0.9331	0.086			
1-Buta	nol(1)-2-oc	ctyne(2)								
200	1.2649	0.0822	-0.1328	0.276	0.5219	0.4045	0.538			
400	1.1144	0.1573	-0.0867	0.175	0.6811	0.3684	0.440			
600	1.0107	0.2401	-0.1123	0.185	0.8445	0.3144	0.561			
760	0.9474	0.3050	-0.1835	0.113	0.9641	0.2817	0.770			

1-butanol with 2-octyne. This azeotrope has a minimum in boiling temperature and exists at all four pressures used. The azeotropic minimum boiling temperature and the corresponding compositions were evaluated from T-X plots. The values obtained are listed in Table 7 together with the compositions estimated graphically by plotting the relative volatility

• · · /			()
Α	В	С	δP
15.73103	2778.86	-67.507	0.026
15.96357	3111.75	-60.937	0.006
15.89072	3046.91	-70.205	0.027
16.40954	3378.20	-53.706	0.018
15.88663	3093.87	-76.825	0.018
15.47861	2822.18	-87.276	0.039
15.99272	3253.90	-61.657	0.006
15.93818	3192.61	-72.099	0.000
15.56869	2557.20	-62.841	0.084
17.19557	3135.66	-93.948	0.010
	<i>A</i> 15.73103 15.96357 15.89072 16.40954 15.88663 15.47861 15.99272 15.93818 15.56869 17.19557	A B 15.73103 2778.86 15.96357 3111.75 15.89072 3046.91 16.40954 3378.20 15.88663 3093.87 15.47861 2822.18 15.993818 3192.61 15.56869 2557.20 17.19557 3135.66	A B C 15.73103 2778.86 -67.507 15.96357 3111.75 -60.937 15.89072 3046.91 -70.205 16.40954 3378.20 -53.706 15.88663 3093.87 -76.825 15.47861 2822.18 -87.276 15.99272 3253.90 -61.657 15.93818 3192.61 -72.099 15.56869 2557.20 -62.841 17.19557 3135.66 -93.948

Parameters of eqn. (2) and the corresponding relative mean errors δP (in %)

^a Parameters used for 1-octyne mixtures with 3-octyne. ^b Parameters used for 1-octyne mixtures with ethylbenzene and dibutyl ether.

TABLE 4

UNIFAC interaction parameters a_{mn} in K

Groups		a _{mn}	a _{nm}	
m	n			
CH=C	C≡C	17.73	24.07	
	CHO	-65.26	-5.96	
	CH ₂ O	192.92	-191.66	
C≡C	ОН	-11.82	858.51	
	CH ₂ O	-119.28	181.77	

TABLE 5

System	δP in % for pressures P in torr						
	200	400	600	760			
1-Octyne-3-octyne	0.09	0.12	0.13	0.14			
Butanal-1-heptyne	0.59	0.45	0.57	_			
1-Octyne-dibutyl ether	0.15	0.14	0.10	_			
2-Octyne-dibutyl ether	0.10	0.08	0.10	-			
1-Butanol-2-octyne	2.79	0.84	0.66	1.64			

System	$\overline{\Delta T}$ at pressures P in torr						
	200	400	600	760			
1-Octene-3-octyne ^a 1-Octene-3-octyne ^b 1-Octyne-ethylbenzene ^a	0.36 0.43 0.08	0.35 0.40 0.11	0.33 0.41 0.07	0.31 0.41 0.05			

Boiling temperature prediction by the UNIFAC model $\overline{\Delta T} = (\sum_{i=1}^{n} |T_{exp} - T_{calc_i}|)/n$

^a P values calculated by using the group interaction parameters taken from refs. 1 and 7. ^b P values calculated by using the group interaction parameters taken from refs. 1 and 8.

TABLE 7

Azeotropic parameters of the binary system 1-butanol(1)-2-octyne(2) at different pressures

Source of data	Pressure/torr								
	200		400		600		760		
	T/K	X_1	 T/K	X_1	T/K	<i>X</i> ₁	T/K	<i>X</i> ₁	
Ebulliometric experiment	354.2	0.685	371.4	0.720	382.5	0.759	389.3	0.791	
Redlich-Kister		0.66		0.73		0.77		0.79	
Wilson		0.68		0.75		0.79		0.82	
UNIFAC		0.71		0.75		0.78		0.79	

calculated by means of the Redlich-Kister, Wilson and UNIFAC equations. The agreement with the ebulliometric composition data can be considered satisfactory. In accordance with Wrewski's rule [9], the mole fraction of butanol in the azeotrope increases with increasing pressure.

REFERENCES

- 1 H. Kirss, M. Kuus, E. Siimer and L. Kudryavtseva, Thermochim. Acta, 195 (1992) 85.
- 2 E. Siimer, M. Kuus and L. Kudryavtseva, Thermochim. Acta, 209 (1992) 103.
- 3 Aa. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria using UNIFAC, Elsevier, Amsterdam, 1977.
- 4 V. Pällin and T. Ilomets, Trans. Tartu Univ., 384 (1976) 98.
- 5 V. Mihkelson, A. Köbu and O. Eisen, Proc. Estonian Acad. Sci. Chem., 29 (1980) 109.
- 6 V. Mihkelson, H. Kirss, L. Kudryavtseva and O. Eisen, Fluid Phase Equilibria, 1 (1977-1978) 201.
- 7 J. Gmehling, P. Rasmussen and Aa. Fredenslund, Ind. Eng. Chem. Proc. Des. Dev., 21 (1982) 118.
- 8 E.A. Macedo, U. Weidlich, J. Gmehling and P. Rasmussen, Ind. Eng. Chem. Proc. Des. Dev., 22 (1983) 678.
- 9 W. Swietoslawski, Azeotropy and Polyazeotropy, Pergamon, New York, 1963.