New oxygen or nitrogen carriers

A. Busnot *, J.F. Le Querler and J. Yazbeck

Laboratoire de Chimie Minérale et Bioinorganique, U.F.R. de Sciences, Université de Caen, *14032 Caen Cedex (France)*

(Received 10 July 1992)

Abstract

Complexes of nickel(II) with the composition $Ni, O, (Imid), A, \cdot zNH_3$ or $Ni_{\nu}N_{\nu}(\text{Imid})_{\nu}A_{\nu}$, $z'NH_3$, where Imid represents the imidazole molecule and A the anion of aspartic acid, picolinic acid, glutaric and glutamic acids, N-acetylglycine or histidine, have been synthesized. The results of thermal and spectral studies are analysed for the various complexes. The TGA curves and diffuse reflectance spectra are reported. Calculated electronic transitions are in good agreement with those observed. The monomeric or dimeric character of these complexes is shown. The nickel ions seem to be in an octahedral environment.

INTRODUCTION

The utilization of molecular oxygen in biological systems is obviously of extreme importance. The ability of transition metal ions to reversibly coordinate 0, has been known for a long time. Some of the first synthetic systems reported to bind O_2 were cobalt(II) complexes [1]. Monomeric Co(II)-dioxygen adduct complexes are of chemical and biological interest [2]. Much of the recent activity in this area has been motivated by a desire to elucidate the factors which lead to reversible O_2 binding and to understand the transport of O_2 and oxidation by O_2 in biological systems.

In addition to their significance as models [3] of natural oxygen carriers, synthetic dioxygen complexes have potential applications in dioxygen separation and storage [4], industrial processes [5,6] and catalysis [7]. Interest in the catalytic aspects of dioxygen complexes has intensified in recent years [S]. These complexes promote reactions similar to or identical to those promoted in biological systems [9, 10].

Recently, several oxygen-carrying chelates containing coordinating ions other than cobalt have been reported [10, 11]. Accordingly, we have directed our initial efforts toward a study of these complexes.

^{*} Corresponding author.

EXPERIMENTAL AND RESULTS

Complexes involving Ni(I1) aspartate, Ni(I1) picolinate, Ni(I1) Nacetylglycinate, Ni(I1) histidinate, Ni(I1) glutarate, Ni(I1) glutamate and imidazole have been prepared.

A mixture of imidazole and nickel sulfate in ammoniacal medium was stirred and filtered. The solution was kept under an O_2 or N_2 flow for 5 min

Microanalysis results

and filtered. The solution obtained was heated with the dicarboxylic acid and left at 278 K to reach crystallization. The following compounds were obtained: **A**, $NiO₂(Imid)₉(aspartate)₃(NH₃)₃$; **B**, $Ni₂N₄(Imid)₉$ - $(\text{aspartate})_3(NH_3)$; C, $NiO_2(Imid)_2(picolinate)_2$; D, $NiN_2(Imid)_2$ -(picolinate)₂; **E**, NiO₂(Imid)₂(N-acetyglycinate)₃(NH₃)₅; **F**, Ni₂O₄(Imid)₂- $(histidine)_{6}(NH_{3})_{4}$; G, $Ni_{2}O_{4}(Imid)_{9}(glutarate)_{3}(NH_{3})_{7}$; **H**, $Ni_{2}O_{4}(Imid)_{5}$ - $(glutamate)_{4}(NH_{3})_{8}.$

The results of quantitative elemental analyses (Table 1) for all the above mentioned complexes support the formulae given above.

THERMAL STUDIES

Additional studies were carried out by thermogravimetry to confirm the molecular formulae assumed on the basis of elemental analysis. The measurements were performed in air over the temperature range 293- 1293 K at a heating rate of 10 K min-' using a Setaram TG 85 microbalance.

Fig. 2. Thermal differential curves in air.

Thermoanalytical diagrams for the complexes are shown in Figs. 1 and 2. The final stage of the decomposition forms the nickel oxide for all compounds studied. The general scheme of decomposition of the different complexes is summarized in the mechanisms shown in the Appendix $(WL = weight loss)$. The intermediate compounds in the Appendix were assumed but not isolated.

DIFFUSE REFLECTANCE SPECTRA

Diffuse reflectance spectra were recorded at room temperature for all compounds on a Beckmann UV 5240 spectrophotometer over the range $40000-4000$ cm⁻¹. Kodak white reflectance standard was used as a reference for the dilution of nickel samples (10 wt.%).

In the near IR sharp peaks of weak intensity correspond to harmonics and combination bands of fundamental vibrations of the ligands. These

Fig. 3. Reflectance spectra.

bands are very difficult to assign. Various types of spectra were recorded and these are shown in Figs. 3 and 4. The electronic transitions observed and calculated for the different compounds are shown in Table 2.

The ground state observed is ${}^{3}A_{2g}$. The principal band v_2 around 17 500 cm⁻¹ is due to the ³A_{2g}(F) \rightarrow ³T_{1g}(F) transition. A v_1 band near 10 750

Fig. 4. Reflectance spectra.

Electronic transitions $(cm⁻¹)$ observed and calculated for the various complexes

Transition	Compound							
	A	B	C	D	E	F	G	$\mathbf H$
v_1 Exp. Calc. ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$	10666 10485	10656 10390	10905 10776	10881 11084	10651 10969	10864 10778	10719 11 000	10627 10429
Shoulder Exp. Calc. ${}^3A_{2g}(F) \rightarrow {}^1E_g(D)$	13 2 8 6 13762	13 1 20 13637	13 120 13721	13179 13692	13 3 81 13776	13 3 28 13802	13325 13 400	13286 13822
$v_3^* - v_1$ Exp. Calc. ${}^{3}T_{1g}(P) \rightarrow {}^{3}A_{2g}(F)$	16985 16941	16696 16787	17504 17 248	17436 17236	17000 17092	17056 17502	17091 16562	17183 17107
\boldsymbol{v}_2 Exp. Calc. ${}^3A_{2g}(F) \rightarrow {}^3T_{1g}(F)$	17413 17165	17280 17326	18016 17644	17957 17955	17492 17602	17632 17813	17636 17039	17492 17 343
Shoulder Exp. Calc. ${}^3A_{2g}(F){}^1T_{2g}(P)$	23762 23 4 21		23 603 22 986		22 413 22704	23 172 23 430		22810 22 692
v_3^* Exp. Calc. ${}^3A_{2g}(F) \rightarrow {}^3T_{1g}(P)$	27651^a 27 4 26	27.352^a 27 177			27651^a 28 061	$27920^{\rm a}$ 28 2 8 0	27 330 27 157	27810^a 27536
v_3^* Exp. Calc. ${}^3A_{2g}(F) \rightarrow {}^1T_{1g}(G)$	28 127 27772		$28\,409^a$ 28 0 24	28 317 ^a 28 3 20	28 160 28571	29040 28 6 10	27810^a 27 5 62	
Imidazole Exp. Calc. Exp. Calc. ${}^3A_{2g}(F) \rightarrow {}^1E_g(G)$	33048 32950 35024 35 070					32512 32950	35 270 35764	33 206 32950 34952 35010
D_{q} (cm ⁻¹)	1117	1106	1159	1151	1122	1128	1135	1121
$B \text{ (cm}^{-1})$	770	763	777	783	766	781	760	778

^a v_3 frequency used to calculate D_a and B in the relations $340D^2_a - 18(v_2 + v_3^*)D_a + v_2v_3^* = 0$, $B = \frac{v_3^* + v_2 - 30Dq}{15}$ $\frac{2}{15}$ (see explanations in ref. 11).

is due to the ${}^3A_{2}$ (F) $\rightarrow {}^3T_{2}$ (F) transition. We observed a ν_3 band, which appears for all the complexes near 28 000 cm⁻¹, due to the ${}^{3}A_{2e}(F) \rightarrow {}^{3}T_{1e}(P)$ or G) transitions.

This assignment seems to be in accord with the various transitions observed. A shoulder at around $13\,250\,\text{cm}^{-1}$ appears to be due to a spin-forbidden transition. It is possible that ligand field in these complexes is distorted from true octahedral symmetry and that the low symmetry component splits the ${}^3A_{2g}(F) \rightarrow {}^3T_{2g}(F)$ transition, giving the spin-allowed band ${}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}(D)$. The Racah parameter *B* [12] can be deduced for a d_8 ion if Δ_0 is the energy of the first transition, the Δ_0/B [13] value leads to the position of each transition. The predicted transition values are in good agreement with the observed values and it seems that the octahedral environment of the complexes is not affected by the nature of the oxygen or nitrogen molecules, or by the imidazole ligand.

REFERENCES

- 1 R.H. Bailes and H. Calvin, J. Am. Chem. Soc., 69 (1947) 1886.
- R.D. Jones, D.A. Summerville and F. Basolo, Chem. Rev., 79 (1979) 139-179.
- N.M. Semozan, J. Chem. Educ., 51 (1974) 503.
- A.J. Adduci, Chemtech., 6 (1976) 575.
- J.S. Valentine, Chem. Rev., 73 (1973) 235.
- C.A. MacAuliffe, H.Al. Khatech, M.H. Jones, W. Levason, K. Minten and F.P. MacCullough, J. Chem. Soc., Chem. Commun., (1979) 736.
- 7 J.E. Lyons, in R. Ugo (Ed.), Aspects of Homogenous Catalysis, Vol. 3, Reidel, Dordrecht, 1977, p. 1.
- 8 J.E. Lyons, in M. Tsuitsui and R. Ugo (Eds.), Fundamental Research in Homogeneous Catalysis, Plenum, London, 1977, p. 1.
- 9 T.E. King, H.S. Mason and M. Morrison (Eds.), Oxidases and Related Redox Systems, Vols. 1 and 2, University Park Press, Baltimore, MD, 1973.
- 10 S. Sakaki, S. Morokuma and K. Ohkubo, Ab initio MO study of the coordination modes and bonding nature of $Rh¹-N₂$ complexes, J. Am. Chem. Soc., 107 (1985) 2686.
- 11 A. Busnot, J.F. Le Querler and J. Yazbeck, Thermochim. Acta, 197 (1992) 443.
- 12 A.E. Underhill and D.E. Billing, Calculations of the Racah parameters *B* for nickel(I1) and cobalt(I1) compounds, Nature, 210 (1966) 835.
- 13 Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn., 9 (1954) 753; 9 (1954) 766.

APPENDIX

 $A = \frac{ \text{TG } 323 - 398 \text{ K}}{ \text{DTA (endo) } 370 \text{ K}}$

 $\text{Ni}_2(\text{Imid})_8(\text{aspartate})_3$ (WL: th. 14.8%; exp. 15%) $\frac{\text{To 398-407 K}}{2}$ **DTA (endo)** $Ni_2(Imid)_{6}$ (aspartate)₃ (WL: th. 11%; exp. 10.2%) $\frac{^{TG\,407-444\,K}}{DTA\,(endo)\,423\,K}}$ $Ni₂(Imid)₄(asparate)₂(WL: th. 21.6%; exp. 21.4%)$ **DTA fendo) 464 K**

 $2[Ni(\text{aspartate}) \cdot \text{Imid})]$ (WL: th. 11%; exp. 11.2%) $\frac{176518-612 \text{ K}}{DTA \text{ (endo) } 528,580 \text{ K}}$ $NiCO₃ · Ni$ aspartate \cdot 2Imid (WL: th. 5.8%; exp. 6%) – **TG 612-760 K > DTA (exe) 643,694 K** $\text{NiCO}_3 + \text{NiO}$ (WL: th. 20.3%; exp. 19.9%) $\frac{100 \text{ N}}{\text{DTA (exo) 760 K}}}$

2NiO (WL: th. 3.5%; exp. 3.8%)

Total weight loss: theoretical 88%; experimental 87.5%.

B $\frac{TG \, 314-406 \, K}{DTA \, (endo) \, 366 \, K}$

 $Ni₂(Imid)₈(aspartate)₃$ (WL: th. 14.2%; exp. 13.7%) TG 406-414K **DTA (endo)** $\text{Ni}_2(\text{Imid})_7(\text{aspartate})_3$ (WL: th. 5.5%; exp. 5.5%) $\frac{1000 \text{ J}}{\text{DTA (endo)}}$ Ni,(Imid),(aspartate), (WL: th. 11.10%; exp. 10.5%) TG **DTA (endo) 523 K** $2[Ni(aspartate) \cdot 3Imid]$ (WL: th. 21.8%; exp. 22.7%) $\frac{10526-579 \text{ K}}{DTA (endo) 546 \text{ K}}$ $2[NI(aspartate) \cdot Imid]$ (WL: th. 11.1%; exp. 10.5%) $\frac{2[OII(1)] \cdot 1}{DTA \text{ (endo) 595 K}}$ $\text{NiC}_{2}\text{O}_{4} + \text{Ni}$ aspartate \cdot Imid (WL: th. 3.7%; exp. 3.5%) $\frac{1000 \text{ N}}{\text{DTA (exo) 673 K}}}$ $2NiCO₃ + Imid (WL: th. 8\%; exp. 7\%) \frac{TG668-780 K}{DTA (eV) 696 K}$ $\frac{1}{2}$ NiO + $\frac{3}{2}$ NiCO₃ (WL: th. 7.3%; exp. 8.6%) $\frac{1800 \text{ Hz}}{\text{DTA (exo) 1265 K}}$ 2NiO (WL: th. 5.4%; exp. 5.9%)

Total weight loss: theoretical 87.9%; experimental 87.9%.

 $\mathbf{C} \xrightarrow{\text{TG }318-418 \text{ K}}$ **DTA** (endo) 330, 424 K

 $\text{Ni}(C_5H_4\text{NCOO})_2 \cdot 2\text{Imid}$ (WL: th. 6.8%; exp. 6.1%) $\frac{100\text{ rad}}{\text{DTA (endo) 585 K}}$ $_{\rm Ni}$ $\!\times$ $\!\mathrm{C_5H_4NCO}$ (\sim COOH \sim Imid(WL: th. 30.8%; exp. 30.8%) $\frac{1}{\text{D}}$ NiCO₃ · Imid (WL: th. 22.7%; exp. 23.3%) $\frac{10^{37}}{DTA (ex)}$ $\frac{10^{37}}{272.752 \text{ K}}$

 $\frac{1}{3}$ NiCO₃ + $\frac{2}{3}$ NiO (WL: th. 20.7%; exp. 21.1%) $\frac{10784-1265 \text{ K}}{8.526 \text{ kg}}$

NiO (WL: th. 3.1%; exp. 3.2%)

Total weight loss: theoretical 84.1%; experimental 84.4%.

$$
D \xrightarrow[\text{DTA (endo) } 330 \text{ K}]{\text{TG 316--448 K}}
$$

 $Ni(C_{5}H_{4}NCOO)_{2} \cdot 2Imid (WL: th. 6\%; exp. 6.5\%)$ $\frac{1}{DTA (endo) 584 K}$ $_{\rm Ni}$ $\rm <$ $\rm C_5H_4NCOC$ \degree COOl \cdot Imid (WL: th. 31%; exp. 31.7%) $\frac{1}{6}$ $\text{NiCO}_3 \cdot \text{Imid (WL: th. 22.9\%}; \exp. 23.1\%) \rightarrow \text{DTA (exo) 716, 726, 737 K}$ $\frac{1}{3}$ NiCO₃ + $\frac{2}{3}$ NiO (WL: th. 20.9%; exo. 20.9%) $\frac{103764-1265 \text{ K}}{DTA \text{ (exo) }1265 \text{ K}}$ NiO (WL: th. 3.1%; exp. 2.2%)

Total weight loss: theoretical **83.9%;** experimental 84.4%.

$$
E \xrightarrow{\text{TG } 326-392 \text{ K}}
$$
\n
$$
\overrightarrow{\text{DTA (endo) } 372 \text{ K}}
$$

 $NiO(Imid)₂(N-acetylglycinate)₃$ (WL: th. 15.3%; exp. 15.8%) $\frac{1}{DTA (endo) 419 K}$ $Ni(Imid)(N\text{-}acetyglycinate)_{3}$ (WL: th. 12.7%; exp. 12.7%) $\frac{1}{DTA \text{ (endo) } 462 \text{ K}}$ Ni(*N*-acetylglycinate)₂ (WL: th. 27.9%; exp. 27.8%) $\frac{1}{\text{DTA (endo) }523 \text{ K}}}$ $N_{\rm Ni}$ /NH-CH₂-COO \bigwedge -acetylglycinat (WL: th. 6.5%; exp. 7.3%) $\frac{1}{20}$ Ni ^{cool} N -acetylglycinat (WL: th. 4.4%; exp. 3.9%) $\frac{1}{6}$ **NiO** (WL: th. 21.9%; exp. 20.5%)

Total weight loss: theoretical **88.7%;** experimental 88%.

TG 325-385 K F-DTA (endo) 368 K

 $Ni₂O(histidine)₆$ (WL: th. 13.5%; exp. 13.5%) $\frac{1}{DTA (endo)}$ Ni₂(histidine)₅ (WL: th. 15.1%; exp. 15%) $\frac{1}{\text{DTA (endo)}}$ $2[Ni(histidine)_2]$ (WL: th. 12.5%; exp. 12%) $\frac{1}{DTA}$ (exo) 694 K $\text{NiCO}_3 + \text{Ni} \left\{\frac{C6641}{\text{histidine}} \right\}$ (WL: th. 28.8%; exp. 28.6%) $\frac{100.7125 \text{ K}}{\text{DTA (exo)} 701,732,753 \text{ K}}$ 2NiO (WL: th. 18.4%; exp. 18.4%)

Total weight loss: theoretical 88.3%; experimental 88.6%.

$$
G \xrightarrow[\mathrm{DTA\,(endo)}]{\mathrm{TG\,313-352\,K}}
$$

 $Ni₂O₂(Imid)₉(glutarate)₃ (WL: th. 11.9%; exp. 12.9%)$ Ni,O,(Imid),(glutarate), (WL: th. 5.2%; exp. 4.9%) z **DTA (endo)** Ni20,(1mid),(g1utarate), (WL: th. 26.1; exp. 26.2%) TF **DTA (endo) 545 K** 2[Ni(glutarate)(Imid)] (WL: th. 17.7%; exp. 17.5%) $\frac{^{17}{16387-700 \text{ K}}}{\text{DTA (endo) 606, 700 K}}}$ $2[Ni(glutarate)] \cdot Imid(WL:th. 5.2\%; exp. 5.3\%)$ $\frac{1}{DTA (endo) 783 K}$ $2NICO₃ (WL: th. 16%; exp. 15.9%)$ $\frac{15.9}{DTA (exp. 1265 K)}$ 2NiO (WL: th. 6.6%; exp. 5.3%)

Total weight loss: theoretical 88.3%; experimental 88.2%.

$$
H \xrightarrow[{\rm{DTA (endo) 364 K}}]{\rm{TG 315-402 K}}
$$

 $Ni₂O₄(Imid)₄(glutamate)₄ (WL: th. 16.5%; exp. 16%)$ $\frac{^{TG\,402-439\,K}}{^{DTA\,(endo)\,421\,K}}$

Ni₂O₂(Imid)₃(glutamate)₄ (WL: th. 8.1%; exp. 8.3%)
$$
\frac{^{TO 439-520 \text{ K}}}{^{DTA \text{ (endo) } 504 \text{ K}}}
$$

\n2[Ni glutamate] · 3Imid (WL: th. 26%; exp. 25.5%) $\frac{^{TO 520-578 \text{ K}}}{^{DTA \text{ (endo) } 541 \text{ K}}}$
\n2[Ni-NH₂-(COO)₂] · 2Imid (WL: th. 12.1%; exp. 12.2%) $\frac{^{TO 578-648 \text{ K}}}{^{DTA \text{ (endo) } 598 \text{ K}}}$
\n2[Ni-NH₂-(COO)₂] · Imid (WL: th. 5.5%; exp. 5.3%) $\frac{^{TO 648-856 \text{ K}}}{^{DTA \text{ (exo) } 598 \text{ K}}}$
\nNiO + NiCO₃ (WL: th. 16.2%; exp. 15.6%) $\frac{^{TO 856-1104 \text{ K}}}{^{DTA \text{ (exo) } 1104 \text{ K}}}$
\n2NiO (WL: th. 3.9%; exp. 5.3%)

Total weight loss: theoretical 88.3%; experimental 88.2%.