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ABSTRACT 

This paper analyzes a one-dimensional temperature field problem on 
solidification with two moving boundaries. The theoretical results are compared 
with those obtained from the finite element analysis and a satisfactory agreement is 
obtained. It is further extended to a 2-D case of welding on a thin plate to show the 
movement of the solidus and liquidus interfaces in the material during the phase 
change. 

INTRODUCTION 

The transient heat conduction problem involving melting and solidification is 
often referred to as a phase change or a moving boundary problem. A moving 
boundary problem, for instance, is encountered in the process of solidification of 
ice making and casting, of melting and solidification during welding, of the 
freezing of food, etc. When a material undergoes the transition from liquid state to 
solid state, or vise versa, it will release or absorb heat energy isothermally through 
the phase change. The difficulty in analyzing such a problem lies in the fact that the 
locations of liquid-solid transition vary with time, i.e. the interfaces of solid and 
liquid are movable and there also exists the problem of release and absorption of 

0040~6031/93/$06.00 0 1993 Elsevier Science Publishers B.V. All rights reserved 



12 

latent heat. For a pure metal during melting or solidification, the phase change 
occurs at a certain discrete temperature (fusion point) with liquid and solid phases 
separated distinctly by a sharp moving interface. The latent heat is released or 
absorbed right in this surface layer which moves with time. But for most alloys and 
mixed materials, the phase change takes place in a transition zone (or two-phase 
region), where both phases exist simultaneously, while solid and liquid are 
separated by a solidus front and a liquidus front, respectively, shown in Figure 1. 
In engineering practice, it is the latter case that we often meet with. 

Most of the exact solutions of phase change problems with a sharp moving 
interface are discussed in detail by Ozisik (1980, pp.397-438). There exists, 
however, a limited amount of literature on two moving boundary problems (Tien 
and Geiger, 1967; Ozisik and Uzzell, 1979). This paper presents an exact solution 
to the semi-infinite freezing problem with two moving boundaries. The result is 
compared with that obtained from the finite element analysis. The phase change 
model is further used in analyzing a more complicated 2-D temperature field of 
welding caused by a moving torch. 

THEORETICAL ANALYSIS 

Consider a semi-infinite body of one dimensional space. At the beginning (t=O), 
the entire body is in a liquid state and has the temperature Ti which is above the 
liquidus front Tz. Then a constant temperature To, lower than the solidus front Ti, 
is suddenly imposed on the surface at x=0. Consequently the liquid begins to 
condense to solid continuously through a solidification zone while Ti is maintained 
at infinity. Heat is removed through the surface of x=0. The solidification zone 
between Tr and T2 expands continuously and travels to the right with increasing 
time, as illustrated in Figure 1. The solidus interface Sr(t) and liquidus interface 
Sz(t) move accordingly. 
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Figure 1. Various Phases during the solidification of a binary system 
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1) 

2) 

3) 

4) 

For simplicity, the following assumptions have been made: 
the physical properties of the solid and liquid part do not change with 
temperature, but may have different values in the three zones, 
the volume of the body does not undergo any change through the whole period 
of phase change, therefore, the density is a constant, 
heat conduction prevails in all the three different regions, even in the liquid 
zone, and 
in the phase change zone, the fraction of solid is directly proportional to 
temperature (Tien and Geiger, 1967; Ozisik and Uzzell, 1979), that is, 

-T, T, fs = f,u ( ‘- T2 _T1 ) 

where, 
f, solid fraction in the two-phase zone 
fsu solid fraction at the solidus front of the two-phase zone 
T, temperature in the two-phase zone 
T1 temperature at the solidus front, and 
T2 temperature at the liquidus front 

f,,=I corresponds to a balanced condensation, solid and liquid have infinite 
diffusivities. 0 < f,, c 1 corresponds to an unbalanced condensation, diffusivity 
of liquid is infinite, of solid is zero. 

The heat energy generated per unit volumn per unit time in the two-phase zone 
due to latent heat can be described as 

QW = !s PL dt (2) 

where L is the energy released or absorved per unit mass (J/kg) during the phase 
change, and p is the density of material. 

Based on the above assumptions, the governing energy equations in the three 
zones can be given as 

a2Ts _ 1 3% 
--a, at ax2 

a2T,+~_ 1 w 
ax2 k, a, at 

a2Tl = 1 aTl 
ax2 al at 

in. 0 c x < S,(t) 

in S,(t) c x < S,(t) 

in x > S,(t) 

(3) 

(5) 

in which S,(t) and S,(t) are the locations of solidus and liquidus fronts, or moving 
boundaries, which are the function of time, k and a represent thermal conductivity 
and diffusivity of material, and the subscripts s, t and I indicate solid, two-phase 
and liquid, respectively. The boundary conditions at the solidus front are 

T,(x,t) = T,(x,t) = T1 at x = S,(t), t > 0 (6) 



at x = S,(t), t > 0 (7) 

and at the liquidus front 

T,(x,t) = TI(x,t) = TZ at x = S,(t), t > 0 (8) 

kaT’= is 
r ax kl ax at x = S,(t), t > 0 (9) 

Equations (7) and (9) are derived from the principle of conservation of energy. 
The right hand side of Eq.(7) represents the heat energy produced at the solidus 
front by the remaining part of liquid during the isothermal change to solid. The 
boundary conditions at x=0 and x+ 00 are defined as 

T,(x,t) = To 

Tl(x,t) = Ti 

and the initial condition is 

at x=O,t>O 

as x+m,t>O 

(10) 

(11) 

T(x,t) = Ti for t = 0, in x > 0 (12) 

The expression for the internal heat source Q of Eq.(4), due to the latent heat, can 
be obtained by substituting Eq.(l) into Eq.(2) 

(13) 

The energy equation in the two-phase zone can then be simplified by combining 
Eq.(4) and (13), as 

r= 1 aTr a2T 
ax2 a: at in S,(t) < x c S,(t) (14) 

where a*, is the modified thermal diffusivity in the two-phase region in which the 
effect of latent heat is included, 

_=pLf,,+L 1 

a: kr(TZ-T1) or 
(15) 

Thus, the governing equations (3-5) for these three regions can share a simple 
form with three different thermal diffusivities, 

a2T _ 1 aT -- 
ax2-a at for t > 0 

1 
as in Oc x <S,(t) 

o= a; in S,(t) < x < S,(t) (17) 

o1 in x > S,(t) 



The three general solutions for the three different zones can be obtained with these 
diffusivities 

T,(x,t) = Ct erf(-- 
2&t 

) + c2 in 0 < x < St(t) (18) 

T,(x,t) = C3 erf( x 1+c4 
2dF 

T&x,t) = Cs erf(&) + C6 
2K-t 

in Sl < x < S,(t) 

in x > S2(t) 

where erf(x) is an error function, or probability integral function, 

erf(x) = z c e-u2 du 
< 

(1% 

(20) 

(21) 

and Cr, C,, *---*., C6 are integral constants which can be solved with the boundary 
conditions, Eqs.(6), (8), (10) and (11) 

T, -To 
Cl = erf(h) 

C2 = To c5 = 
Ti-T, 

(22) 

cs = 
Tz-TI C,=Ti- 

Ti-T2 

erf(q) - erf(h 

where erfc(x)=l- erf(x) is a complementary error function. 
The temperature distributions in the three zones can be established and have the 

form 

T,-T:! 
T,(x,t) = To + erf(h) erf(A) 

2&G-t 
in 0 c x < S,(t) (23) 

T,erf(n) - T2erf(h 

T,(x,t) = 
T2-T, 

II 

_ erf( ’ ) 

erf(q) - erf(h erf(q) - erf(h 2) 
2fi 

in St(x) < x c S,(t) (24) 



T/(x,t) = Ti - in x > S,(t) 

in which 

h 
= S,(t) 

26 
S,(t) -- 

q-2Kt 

or 

or 

S,(t) = 2h+x, t (26) 

S,(t) = zrlfi 

(25) 

(27) 

Since equations (26-27) should be satisfied for all times, the parameters h and q 
must be constant, which are determined by equations (7) and (9). Substituting the 
above two equations into energy equations, we obtain the implicit expressions for h 
andq as 

_h’ 3 
e ’ 

erf(q) - erf(h 

= G&(1 -f,,>L 

UT2 -T,) 
(28) 

(2% 

The parameters h and 71 can be solved from the above two equations, hence the 
positions St(t) and S,(t) of the two phase moving boundaries at any time are known 
and the whole temperature field is thus completely defined. 

To illustrate the validity of the above analyses, we take an example of the 
solidification of an aluminum-copper alloy containing five percent copper. The 
physical properties and concerned parameters of this material are obtained from 
Ozisik an Uzzell(1979), 

k, = 197.3 & 

J 
c, = 1,046.7 kg,C 

P = 27,232.2 2 

Tt = 547.8 “C 

k, = 181.7 & 

J 
c1 = 1,256.0 kg.C 

J 
L = 395,403 kg 

T2 = 642.2 “C 

f sI( = 0.8952 

and k, and c, for the two-phase region can be approximately taken as an average 
value of that of liquid and solid. 
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It is assumed that the initial temperature Ti of liquid is 646°C and several 
boundary temperatures are chosen for calculation: To = 53O”C, SOO”C, 400°C 
300°C and lOO”C, respectively. The values of the’ parameters h and q are solved 
from the simultaneous equations (2%29), and are listed in Table 1. 

TABLE 1 

The variation of h and IJ with different boundary temperatures T,-, (Ti = 646’C) 

To (“C> 

530 0.06519 1.8147 

500 0.14382 1.8766 

400 0.30703 2.0324 

300 0.41192 2.1506 

100 0.55408 2.3309 

The locations of solidus and liquidus moving boundaries can be determined 
from equations (26-27), if h and IJ are known. Thus according to equations (23- 
25), one dimensional temperature field with the variation of time is established. 
Figure 2 shows the variation of location of the solidus and liquidus fronts with time 
(To = 530°C). Figure 3 and Figure 4 show the temperature distributions, with (a), 
(b) and (c) corresponding to To = 53O”C, 300°C and lOO”C, respectively. The 
former shows the variation of temperature with time at fixed locations, and the 
latter shows the variations of temperature with location at fixed times. 
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Figure 2. The variation of locations of solidus and liquidus fronts with time for TO = 53o’C 
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Figure 3. The variation of temperature with time at f=ed locations for Ti = 646X! 

Figure 4. The cariation of temperature with location at fixed times for Ti = 646X! 
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NUMERICAL SOLUTIONS AND DISCUSSTION 

In addition to the theoretical analysis, we also carried out a finite element 
analysis on this problem for comparison. The model of Eq.(17) was applied in the 
numerical calculation. The finite element mesh used is 40 x 1 mm, as shown in 
Figure 5. The numerical results relevant to the exact solutions are plotted on the 
same figures as the analytical ones (Figures 2-4). 

1 

0 

y(mm) 

TO Tl M/J/&&/ I 
I x(mm) 

S,(t) w 40 

Figure 5. Finite element mesh of one-dimenstional freezing problem 

It can be seen from the curves in Figures 2-4 that the finite element results 
agree well with the exact solutions. The temperature difference on the liquidus 
front in Figure 2 (To=530”C) is due to the limited length of the finite element mesh 
(40 mm). If the length were infinite, the difference would be hardly seen, which 
can be explained by reference to the solidus front. There is almost no difference 
shown in the figure between analytical and numerical solutions on the solidus 
interface. It implies that the phase change model of Eq.(l) can be used not only in 
one dimensional analysis, but applied to two or three dimensional cases and more 
complicated boundaries as well with the aid of numerical methods. 

Welding on a thin plate is a two dimensional case. According to Krutz and 
Segerlind (1978), there exist two interfaces in a mild steel, a liquidus front and a 
solidus front, with a transition zone in-between where the latent heat is absorbed or 
released. The solidus front is represented by a 1700 K isotherm while the liquidus 
front has a 1755 K isotherm. According to Wang (1984), the equation of 2-D heat 
conduction in a thin plate with upper and lower surfaces exposed to air can be 
expressed as 

&(k$) + $(k$ ) - ‘+ (T-T,) + q = Pc; g (30) 

where 
h_ average heat transfer coefficient of the upper and lower surfaces of the plate, 
T, temperature of the surroundings, and 

L 
‘; = Cl + T2_T, - is the modified specific heat in the transition zone (T, < T < T2), 

which means the effect of latent heat is taken into account by increasing the value 
of specific heat. When The temperature of an element is below Tt or above TZ, the 
c, of solid or cl of liquid will be adopted. 

The heat energy per unit vohunn absorbed by the plate can be modeled as 
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$x,y,t) = 3G exp[ -3 x2 + (’ 
- vt)2 

7cf28 i2 
1 

where 
G total effective power input (Watts) from the welding torch, 

f effective heating radius, 
6 thickness of the plate, and 
V travel speed of the torch. 

Applying the finite element method to a mild steel plate 
dimensions 

L = 240 mm, b = 80 mm, 6=2mm, 

(31) 

(see Figure 6) of 

with the finite element mesh drawn in Figure 7, and the travel speed of the torch of 
5 mm/set, a set of isotherms can be drawn at different locations along the path of 
the arc, which are shown in Figure 8. Since the fusion of steel occurs in a 
temperature range from 1700 K to 1755 K, the travel of the interfaces can be 
readily determined as illustrated in Figure 9. 

7 Welding Torch 

-----. _~________ 

------------ 

.LN 
Figure 6. Schematic sketch of welding on a thin plate of mild steel 

I- 240 

Figure 7. Finite element mesh of the thin plate 



(a) Isotherms at x=64 mm 
time=12.8 sec. 

t Direction of the torch movement 

t Direction of the torch movement 

, 

?Y&F.zF.z-- 
t Direction of the torch movement 

Figure 8. Temperature distributions as the arc travels along the plate 

80 6460 40 20 0 mm 
-t-Direction of heat source movement 

(b) Isotherms at x=184 mm 
time=36.8 sec. 

(c) Isotherms at x=240 mm 
time=48 sec. 

Figure 9. Position of interfacial moving boundaries at x=64 mm and time=12.8 sec. 
(enlargement of Figure 8(a)) 
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CONCLUSION 

From the above analysis of the one-dimensional heat conduction problem, it can 
be seen that the method of finite element analysis can be used to determine the 
movement of the interfacial boundaries of a material under a transient change of 
temperature with sufficient accuracy. It has been further applied to a two- 
dimensional case of welding plates. The calculated results are found to be in a 
satisfactory agreement with the experiment (Wang, 1984). Hence it can be 
concluded that, this method 
case. Further investigations 
problems as well. 
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