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ABSTRACT 

The theory of heat conduction by phonons is reviewed, with 
emphasis on ordinary and high temperatures. The spectral contri- 
bution to the conductivity is discussed for various resistive pro- 
cesses. These include anharmonic interactions, scattering by point 
defects, by extended defects, by grain boundaries and by inclusions. 
Phonons are also absorbed and reemitted by two-level systems such 
as spins and mechanically bistable centers. 

INTRODUCTION 

Heat in solids can be regarded as the energy due to an assem- 
bly of excitations, and heat transport is due to those excitations 
which are mobile, principally electrons and phonons.*As in the 
kinetic theory of gases, the thermal conductivity can be expressed 
in the form 

;\= zi ci Vi&/3 (1) 

where Ci is the specific heat per unit volume due to excitations 
of type i, v. is their velocity (or group velocity in the case of 

waves) and '4. t h e mean free path or attenuation length. 

Phonons ake quanta of energy of the various vibrational modes 
of the solid. Some of these modes are localised, some are not. For 
purposes of heat transport one needs only to consider the latter 
modes, which are progressive waves (elastic or lattice waves). Each 
such mode is specified by its angular frequencyu, its wave-vector 
9 and by an index j which denotes polarisation and branch (optic 
or acoustic). The thermal energy of each mode consists of an inte- 
gral number of phonons, behaving like particles, each of energy 
bid, 
v=ac, as 9 uasi-momentum dq, and moving with the group velocity . In principle all branches contribute to the energy 
transport, but frquently the major contribution comes from the three 
acoustic branches. 

One can set up a Boltzmann equation for the phonons, as in 
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the kinetic theory of gases, and obtain for the lattice thermal 
conductivity (e.g. Klemens 1959) 

h = (l/3) xj _f CjW) vj(W) ijW) dc) 

where C (W)dG) is the contribution to the specific heat per unit 
volume jfrom modes of frequency L3,dG) and the j'th polarisation 
branch. The mean free path c(0) is generally a function of 
frequency as well as temperature T. 

In an ideal crystal, i.e. one which has perfectly regular 
structure, which has no external boundaries, and which has harmonic 
interatomic forces, the lattice waves are normal modes. The energy 
content of each lattice waves, or the number of phonons in it, are 
a constant of motion, and the mean free path is infinite. A finite 
thermal conductivity is the result of energy interchange between 
the waves, which are now normal modes only approximately, owing 
to the departures from this ideal. External boundaries scatter 
phonons from one mode into another, as do structural imperfections 
of the crystal lattice. Even in a perfect crystal there are anhar- 
monicities; terms in the potential energy as function of displace- 
ment of higher power than quadratic. All these effects cause energy 
to be interchanged between lattice waves, limiting their mean free 
path. A mean free path which is limited only by anharmonicities 
is the intrinsic mean free path /,(w,T). 

INTERACTION PROCESSES 

The potential energy of a solid contains not only harmonic 
terms (bilinear in the strains or relative displacements of the 
atoms) but also terms of higher order. Except possibly near the 
melting point, the major contribution comes from cubic terms. In- 
cluding these in the equation of motion as a perturbation, there 
results an exchange of energy, always between three normal modes. 
In the quantum-mechanical treatment, these become three-phonon 
interactions: a phonon each from two modes combine (are annihila- 
ted) to form or create a phonon in a third mode, or vice versa. 
Symbolically 

(g,j) + (g’,j’) Cs h”,j”) 

where (q,j) denote the wave-vector and polarisation index of one 
of the modes. As for any non-linear process involving three osci- 
lators, these interactions must satisfy the frequency condition 

LJ + 0' = w" (4) 

as well as a wave-vector interference condition (phase matching 
in space) 

(5) 
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In a uniform continuous medium, b=O, but in a discrete crystal 
lattice, where the anharmonicity resides in discrete linkages, 
there are also processes for which b is a reciprocal lattice vector, 
leading to combined three-phonon Bragg scattering interactions. The 
former are termed normal or N-processes, the latter are Umklapp or 
U-processes (German: umklappen, to flip over). 

The intrinsic thermal reistance is due to the U-processes only, 
because a temperature gradient increases continuously the net mo- 
mentum of the phonon gas, so that a steady state can be attained 
only by processes which change the net momentum. Nevertheless, the 
N-processes do play an indirect role: they can transfer momentum 
between groups of modes which differ in the rate at which momentum 
is obliterated by other, resistive processes, i.e. by U-processes 
but also by defect scattering. It is the role of the N-processes, 
acting in conjunction with the resistive processes, which makes 
the solution of the phonon Boltzmann equation difficult, particu- 
larly at low temperatures. 

If this complication is disregarded, one can derive by per- 
turbation theory (Klemens 1969) the reciprocal mean free path for 
the three-phonon processes. At temperatures comparable to or higher 
than the Debye temperature 8 

I/[,(o,T) = 2&' (kT/ya3) O*/~LSD 

where ,u is the shear modulus, a3 the atomic volume, WD=kQ/ ti 
and 8 is a parameter describing the strength of the 
(GrtJneisen constant). also k and bI are the Boltzmann 

anharmonicity 
constant and 

the reduced Planck sonstant. 
At temperatures well below the Debye frequency, the theory 

is more complicated and 

l/ei(o ,T) = d(o ,T) exp(-To/T) (7) 

where d is a slowly-varying function of W and T, while kTo=tibz, 
where Aoz is the difference in frequency between the lowest and 

the next-to-lowest modes of different polarization at the zone 
boundary: Q/T usuallyranges between 2 and 3. In this review the 
emphasis wTll"be on ordinary and high temperatures, so that (6) 
will be used for ei. 

Scattering by external boundaries in single crystals, and by 
grain boundaries in polycrystalline solids, limit the mean free path 
to a value LB, either close to the shortest linear dimension of 
the specimen, or near the average grain diameter. 

Of the various defects which scatter phonons, point defects 
are the strongest at high frequencies, while extended defects are 
more important at low frequencies, as are boundaries. Writing 
for defects 

l/P, -c an (8) 

then n=4 for point defects, n=3 for cylindrical defects, n=2 for 
sheets, and n=O for boundaries and for inclusions which are larger 
than the phonon wave-length and thus present a geometrical shadow. 
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Dislocations, in virtue of their long-range strain field, cannot 
be considered to be cylinders, except at the highest phonon fre- 
quencies. For sessile dislocations n=l, for fluttering dislocations 
low frequency phonon scattering is considerably enhanced (Anderson 
1983). 

If we regard point defects as regions of volume a3 in which 
the density and the elastic moduli are changed, so that locally the 
phonon velocity v is changed by Av, 

1/e,cw > = c(a3/n v4) ( Av/v)* a4 (9) 

where c is the fractional concentration of point defects (Klemens 
1955). If there is some correlation in the position of point defects, 
this must be multiplied by a factor proportional to the Fourier 
inversion of the correlation function. In the case of substitu- 
tional impurities and mass difference AM, dv/v=-AM/2M. Distor- 
tion makes a contribution which either reinforces or reduces 
the scattering. Since distortions limit the solid solubility, 
there is an upper limit to their effect (Klemens 1986). For 
vacancies, Av/v=-3/2. 

INTRINSIC CONDUCTIVITY 

One can now substitute the expressions for the mean free path 
into (2). In view of the major role played by the mean free path 
and the uncertainties in its estimate , one is usually justified in 
using a simple Debye model for the specific heat, particularly as 
this model is a good representation of the low-frequency part of 
the spectrum, and as the low frequencies play a relatively large 
role in the phonon thermal conductivity, as will be seen below. 

According to the Debye theory, after summing over the three 
polarisation branches, 

C(4) > = 9k a -3 (ti2/OD3) x2 ex (eX-l)-* (10) 

where x=Mti/kT. At high temperatures C(W >wO * (classical limit) 
up to the highest frequency WD. At low temperatures C(G)) falls 
rapidly below the classical limit at frequencies above 2kT/g. 

At ordinary temperatures and above, where the classical limit 
can be used r2C(u) ei(W) 
li(C,>WL? m 

is independent of frequency, because 
Thus while the highest frequencies make the major 

contribution to the specific heat and to the thermal energy, equal 
frequency intervals make equal contributions to the intrinsic 
thermal conductivity 

hi = (1/3)J7w) &(U ) vdti = (3&*)tv*/~~)(,u/T) (11) 
3 

since VxaaD, the intrinsic thermal conductivity, which varies 
as I/T, is higher the higher the Debye temperature or Debye fre- 
quency, but also depends on the shear modulus, which is less vari- 
able than the Debye temperature. Tightly bound crystals of low 
atomic mass have the highest intrinsic thermal conductivity. 
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EFFECT OF IMPJZRFECTIONS 

To first order, the various imperfection reduce the mean free 
path, making additive contributions to the interaction probability 
per unit path length. Thus 

l/e(o) = l/f!$LL?,T) + l/[,(ti) + l/L + . . . (12) 

where the terms are due to intrinsic scattering, point defects, 
boundary scattering, and there may be terms due to other defects, 
spins and other two-level systems and interaction with free elec- 
trons and holes. 

Because contributions to the thermal conductivity come from 
a wide spectral range, and because of the wide difference of the 
frequency dependence of the contributions to l/1(0), one cannot 
treat the thermal resistivity as being additively composed of the 
intrinsic, point defect and boundary resistivities. It is sometimes 
a better approximation to treat the reduction in conductivity due 
to point defects and grain boundaries as independent of each other, 
since point defects are most important at high frequencies, grain 
boundaries at low frequencies. 

Point Defects 

Since e,(w )%We4 and li(0)m W 
-2T-1 , p&t defects are 

more important at frequencies (.J>o , where 
at which 4 p= eia Using (6) and (9)' 

ti 
P 

is the frequency 

"jP 
2 
= (kT/pa3c) ( ~v/v>-~ (2TT$'v3/a3cJD) (13) 

With ~(c~)=(l//~+l/[,)-', one readily sees that x,, the conduc- 

tivity in the presence of point defects, is given by 

(14) 

The stronger the point defect scattering, the lower is up, and the 
lower is the theTa1 conductivt;y. 

Since wp=Ti, and hi-T , the thermal conductivity varies 

as (CT) -4 in the limit of strong point defect scattering. Equation 
(14) holds for all concentrations, even when 0 In that case 
the intrinsic and the point defect resistivitie 8 

>oI-,. 
combine additively, 

but in general this is not true. 

Grain Boundaries 

The limit placed on the phonon mean free path by the specimen 
dimensions is important only at low temperatures. The thermal con- 
ductivity of crystals with 2 to 5 mm diameter typically reaches 
a maximum between I5 and 3OK (for diamond this is i'0K). and fs size 
dependent at lower temperature. In thin films and poly&ystalline 
solids the term l/L is important at lowest phonon frequencies even 
at ordinary and elevated temperatures. One can define a frequency 
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0 B such that ti(dB,T)=L, i.e. from (6) 

c3B 
2 
= (pa3/2J2kT) vo,,/L (15) 

so that w,q(TL)-'. Roughly speaking, this frequency-independent 
scattering removes phonons of frequency below tiB from the conduc- 
tion process. The conductivity is reduced by an amount AhB, 
where 

(16) 

Now tiBs.T-+ whereas from equation (13)op9T4. Comparing 

typical magnitudes for grain boundary scattering with L=S,um, with 

,Ua3/k=50,000K, r =2, v=4x105cm/s and wD=4x10 
13 -1 s 

at 300K and 0.01 at 1,200 K. 
, oB/wD=o.02 

If there is point defect scattering as well as grain boundary 
scattering, as in random solid solution polycrystalline ceramics, 
then at ordinary temperatures 0 is well above W . For example, 

ma erial constantsPand 20% solutes o! Av/v=l, and 
7:t;3:;;l;Y?cm-5, equation (13) yields 0,/~,=0.17 at 300K and 

0.3 at 1,200K. Thus at ordinary and high temperatures tiB lies well 

below (3 
ax, anB 

. In such cases the reduction due to grain boundaries 
the reduction due to point defects Ax,=(X i-lp) are 

independent of each other, and 

(17) 

However, at lower temperatures, say at 70K, CJ~/W~=O.O~ while 

0~/cJ~=O.08. In this case there is a frequency range where all 
three scattering processes are important and the reductions in 
conductivity are no longer additive. IfWB and ~3 

P 
are comparable, 

the thermal conductivity is almost independent of temperature. This 
may be the case in fine-grained materials or in thin films with 
strong point defect scattering. 

Inclusions and Radiation Damage 

Small inclusions, which are however larger than or comparable 
to the phonon wave-length, scatter idependently of frequency with 
a mean free path L' given by their geometrical cross-section, i.e. 

l/L' = N/T r2 (18) 

where.N is the number of inclusions per unit volume, and r is their 
radi s. 

Y 
Since the fractional volume occupied by the inclusions is 

4nr N/3, smaller inclusions are more effective for the same frac- 
tional volume. The inclusions may be colloidal particles, small 
foreign crystallites, or damage clusters in the case of radiation 
damage, It is assumed that these inclusions are randomly distribu- 
ted throughout each crystal or grain: inclusions concentrated at 
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the grain boundaries would merely affect grain boundary scattering 
just slightly. Also phonons of very low frequency, such that 
G:(v/r, have a much lower scattering cross-section than that 
given by (18). 

Radiation damage produces vacancies and interstitials in 
equal number. These tend to recombine, but if there is a sink for 
one species, e.g. at grain boundaries, the other species will 
tend to cluster into small colloids (or cavities respectively), 
while some will remain atomically dispersed. The effect of radi- 
ation damage on thermal conductivity can be modelled in terms of 
inclusions and point defects. The inclusions can be related to 
macroscopic volume increases (Klemens 1984, Rohde and Schulz 1990). 

OTHER PROCESSES 

This simplified overview, even though it excludes low tempe- 
ratures, does by no means exhaust the factors to be considered in 
a quantitative analysis. 

For example, the effects of normal or momentum-conserving 
processes were disregarded. These processes move phonon-momentum 
from the low frequencies, where scattering is weak, to high fre- 
quencies, where scattering is stronger. They thus reduce the 
mean free path of low frequency phonons and are the more important 
the stronger the frequency dependence of l(d). However, since 
they themselves affect e(u), the problem of determining A(4)) 
or solving the phonon Boltzmann equation is equivalent to solving 
an integral equation. The approximation of Callaway (1959) is 
widely used . It is based on the principle that normal processes 
do not change the total momentum of the phonon gas. The stronger 
the point defect scattering, or any other process which is very 
frequency dependent, the more important do the normal processes 
become. 

At high temperatures, when there are only point defects and 
the intrinsic interaction, and if w /(-JD< 4, one can account for 
N-processes roughly by halving hi '(Klemens, White and Tainsh 
1962). 

Sometimes one must consider a scattering center which can 
be in one of two distinct energy levels, with energy seperation 
ti GJ , and which can make a transition from one level to the other 
wi& the emission or absorption of a phonon of frequency G),._These 
levels may be spin states, or they may correspond to two distinct 
configurations of a molecular group in the crystal lattice, such 
as Si-0-Si in silica. If all centers have the same splitting goo, 
the only phonons affected will be those in a narrow frequency 
band about the resonance frequency. Even though the interaction 
is much stronger than point defect scattering, since the pertur- 
bation is linear in the stain of the lattice modes rather than 
bilinear, the effect on the thermal conductivity is small and 
proportional to the line width AW : the fractional reduction in 
thermal conductivity is of order Ao/~JJ. This model applies to 
spins , where &J. is increased in the paramagnetic state because 
of the random influence of neighboring spins, and it describes 
the reduction in thermal conductivity of crystals with magnetic 
ions at the Curie or Neel temperature (Klemens 1989). 

Amorphous solids also contain two-level centers with a wide 
distribution of resonance frequencies , in fact so wide that over 
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the important frequency range 

the resonance frequency range 

This results in a phonon mean 

the number of two-level centers in 

~~~~~ is independent of 0,. 

free path proportional to w -1 and 
7 

a thermal conductivity proportional to TL (Zeller and Pohl 1971) 

The other scattering mechanism important in glasses is a verystrong 

point defect scattering (Anderson 1981). Since each microscopic 

element of volume a3 is randomly oriented, and since the phonon 

velocity in the corresponding crystalline form depends on orien- 

tation, one can estimate (Av/v)~ in equation (9). However, the 

effective value of a3 is larger than an atomic volume, because 

there are structural correlations (Klemens 1985). 

That the two-level mechanism persists even at high tempera- 

tures can be seen by comparing the thermal conductivity at 500K 

of vitreous stlicy (1.6 W-m -K-l) with that of a 50:50 Ge-Si 

alloy (6 W-m -K >. The point defect scattering should be the 

same to within a factor 2: both systems have the same average 

value of (~v/v)~ of about 0.15 (Klemens 1985). The difference 

is that in the case of Ge-Si phonons with w< 0 
P 

are limited 

only by intrinsic interactions (equation 6) while in vitreous 

silica the mean free path is much shorter due to the two-level 

lnteractlons.. The nature of the two-level center is probably a 

double-well potential of the oxygen atom in some of the Si-0-Si 

links, randomised by the strains of the irregular structure of 

the surroundings. Bistable centers also affect other properties 

at low temperatures, such as specific heat, dielectric loss, ultra- 

sonic attenuation and thermal expansion (Phillips 1981), and are 

frequently met with not only in amorphous solids, but also in 

crystals with radiation damage and molecular impurities, and even 

in alloys with size misfit. However, the exact nature of these 

centers and their resonance frequency distribution has yet to be 

elucidated in the majority of case. 
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