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ABSTRACT 

Analytical short-time solutions of one-dimensional heat conduction problems 
associated with flash thermal diffusivity measurements are given for the case 
of triangular pulse shape. The heat conduction problem is solved by the 
use of Laplace transforms taking advantage of the fact that the convolution 
of the temperature response curve at the back face of the sample with a 
triangular pulse function reduces to a simple multiplication in the Laplace 
domain. Instead of using the usual inversion, an expansion of the transform, 
followed by a term-by-term inversion, yields the solution in the time domain. 
This leads to a rapidly converging series for short times. Even using only one 
term, the relative error from the exact solution does not exeed 0.1 % at the 
double half-rise time. The given solutions describe the rear-face temperature 
response after illumination of the front surface of a mono-layer slab with a 
triangular shape pulse for the case of heat losses from the sample faces as 
well as for adiabatic conditions. Numerical approximations are given for less 
common higher functions appearing in the analytical solutions. 

INTRODUCTION 

During the thirty years passed since the first publication by Parker et 
al. (1961), the laser flash method has become a standard method for the de- 
termination of thermal diffusivity. The main advantage in comparison with 
other commonly used stationary or instationary measurement methods is the 
economy with regard to measuring time and sample size and a temperature 
range which well exeeds 1000°C. 

The experiment is performed by illuminating the front surface of a flat, thin 
sample for a very short time and recording of the temperature versus time 
history at the back face of the sample. The thermal diffusivity is obtained 
by comparison of the sampled data with an analytical solution of the heat 
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conduction equation given by Parker et al. (1961): 

e/e, = 1+ 2 2(-l)” 
n=l 

cos 7 exp( -n27r2Fo) 

where 8, is the maximum temperature rise at the rear face, 2 the thickness of 
the sample and Fo the Fourier-number which denotes a dimensionless time de- 
fined by Fo = t/to, where to is the characteristic rise time to = Z2/a. The eval- 
uation of a measurement is easily done by use of the relation to = tr,2/0.1388, 
where trl2 is the time needed to reach 8,/2. 

Eq. 1 is derived assuming adiabatic conditions during the measurement 
and infinite pulse width of irradiation. Often these ideal conditions can’t be 
achieved: samples of low thermal conductivity suffer a remarkable heat-loss 
even at temperatures well below 1OOOOCwhereas good conducting samples are 
affected by finite pulse time. Therefore these influences have to be taken into 
account at the derivation of the theoretical solution . This work was done in 
the late sixties and early seventies by different authors (Cape and Lehmann, 
1963, Heckman, 1973, Taylor and ClarkHI, 1973, 1975). 

The effect of non-ideal measurement conditions was treated as heat-loss 
correction and finite pulse width correction respectively and applied by the 
use of standard tables in order to retain the simple tlj2-method and because 
extensive numerical evaluation equipment was not a matter of course at that 
time. 

Eq. 1 can be expressed as 

-(n + l/q2 
Fo (2) 

which is a well known identity in the literature on Laplace transformation 
(Carslaw and Jaeger, 1959, Doetsch, 1972). The main difference between 
these two series is the convergence behaviour: Eq. 1 converges only slowly at 
short times, whereas Eq. 2 has a slow convergence behaviour at longer times. 
Since heat-loss has little influence on the thermal response of the sample at 
short times, Eq. 2 is well suited for the evaluation of measurements affected 
by heat-loss (James, 1980). Moreover using the first term of Eq. 2 yields 
a simple evaluation method for the thermal diffusivity, as was outlined by 
Takahashi et al. (1988). Nevertheless only a few publications concerning this 
method appeared in recent years. James (1980) derived an analytical solution 
based on Eq.2 for flash measurements affected by heat-losses, Gembarovic et 
al. (1990) described a least squares fitting technique. 

Analytical solutions taking finite pulse time effects into consideration were 
related to Eq. 1. The aim of this paper is to give short time solutions for 
the heat conduction equation describing the thermal response of a mono-layer 
slab illuminated by a triangular pulse under adiabatic conditions or affected 
by heat-loss respectively. 

THEORY 

For the derivation of the solutions given in the following section we consider 
a mono-layer slab of thickness I of homogenious material characterized by its 
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thermal diffusivity a = X/p c,,, where X is the thermal conductivity and p cP the 
heat capacity per unit volume. The initial temperature 0(~:,0) is set to zero 
for simplicity. In the idealized case of measurement, the front surface of the 
sample at z = 0 will be illuminated by an infinitesimal short heat pulse q6(t), 
where 6(t) denotes Diracs delta-function and q the energy deposited per unit 
area. The heat diffusion within the slab shall be one-dimensional and without 
any heat-loss from the sample surface. After having reached a stationary 
temperature distribution, the sample will have the uniform temperature 8, = 
dP 4 

The effect of heat-loss is described by a constant heat-transfer coefficient 
o. It is assumed that there won’t be any radial heat-loss in order to keep the 
problem one-dimensional. Furthermore the temperature rise coo = 0(x, oo) 
has to be small enough for a linearisation of radiative heat-losses to be valid 
to describe the physical situation. 

The form of the finite heat pulse of most commonly used flash sources is 
approximated by a triangular pulse shape throughout literature (Taylor and 
ClarkIII, 1973), so finite pulse time will be treated in this way. 

Basic equations 

Let 

PI = l/b 
pz = -l/b(l - b) (3) 
/33 = l/(1 - b) 

where b denotes the fraction of the pulse duration tA at which the apex occurs 
(see Fig. 1). 

bta L t 

Figure 1: Triangular pulse as a function of Fo 

Given a linear system (i.e. the sample in this case) with a known transfer func- 
tion g(t), which is the response to an excitation in the form of a delta-function 
S (t), the response to any arbitrary excitating function f(t) is mathematically 



344 

described by the convolution of these two functions: 
t 

f(t) * 9(t) = 
% 

f@ - 49(4 w j f w f&- 
0 

(4 

One of the basic statements of Laplace transformation is the convolution the- 
orem 

f(t) * 9(t) - ww (5) 

showing that a convolution in the time domain reduces to a simple multiplica- 
tion in the Laplace domain. To describe the influence of the finite pulse time 
in flash measurements, we have to derive the solution to our heat conduction 
problem in the Laplace domain, 0(x, s) and to multiply this by the transform 
F(s) of a triangular pulse denoted by f(t) in the time domain. Finally the 
product has to be retransformed in order to get the temperature response in 
the time domain. 

Then the triangular pulse and its transform are given by 

Pit O<t<btA 

f(t) = $ p3(tA - t) for btA<t<b 
A 

0 t > tA 

(6) 

PI - Vl(l + st)edst] 

F(s) = & pl + &emsbtA+ [p3(1 + s(t - tA)e-“1 

/?l + &emsbtA + P3emstA 

The factor 2/t; is chosen to represent f(t) in a unit form, which removes the 
denominator in Eq. 4. The terms in square brackets yield a time shift about 
t in the time domain. Therefore they are only important in the case of the 
convolution of a function g(t), which does not vanish at t = 0: 

In the case of the functions treated here, g(t) does vanish, so the bracketed 
terms don’t have to be taken into account. 

The convolution of the unit pulse function f(t) with any arbitrary function 
g(t), which vanishes at t = 0, yields the general solution, expressed in terms 



345 

of the dimensionless Fourier-number Fo: 

’ PlhWo) for 0 5 Fo 5 bFoA, 

,&h(Fo) + ,&h(Fo - bFoA) 

f(Fo) * g(Fo) = &- ’ for bFoA 5 FO < FOA , (8) 
0 A 

Plh(Fo) + /Gh(Fo - b FOA) + &h(Fo - FOA) 

\ for Fo 1 FOA 

with 

h(Fo) o----a Wo) 
q-’ 

To get the solution of the heat conduction equation in the Laplace domain, 
0(x, s), we have to solve 

(10) 

which is done by the general solution 

0 = C&l1 + c2,-Cl’. 

The boundary conditions are 

(11) 

fj=_xg= qC5(t) -cYe W -X$=q-aO 

for 2 = 0 and 
dO 

-a+9 -0 - x- = -a@ 
dx 

(12) 

(13) 

for z = 1, which describes the measurement situation of an infinitesimal short 
pulse absorbed in the front-face plane at 2 = 0. The equation describing the 
temperature history at the rear face is derived from Eq. 11-13 to 

O(<, Bi)/O, = 2 to 
ce+ 

([ + Bi)2 - (< - Bi)2e-2t 
(14) 

where Bi denotes the Biot-number al/X. This can be expanded to the infinite 
sum 

@({, qp, = 2 to 2 6 (t - W2” ,-Pn+lK 
n=. (5 + Bi)2”+2 (15) 

which allows a term-by-term inversion to the time domain. 
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Adiabatic Conditions 

In the case of adiabatic conditions the Biot-number has to be set to zero and 
Eq. 15 reduces to 

which is the Laplace transform corresponding to Eq. 2, since 

,-(n+1/2)2/Fo e-(2n+1)e 

t&i% < 
(17) 

The convolution of Eq. 16 with the triangular pulse function is performed by 
inserting 

h(Fo) = 16 t; Fo~‘~ $ i3erfc ( “g2) 

into Eq. 8. h(F ) o contains the third integral of the complementary error 
function i3erfc (Fo), which can easily be computed by the use of rational ap- 
proximations (see section Numerical Approximations). 

Fig. 2 shows the thermal response for the case b = 0.1 and FOA = 0.5 Fo. 
The first term of the solution given ahead and the sum of the first two terms 
are also plotted. It should be remarked that even the first term gives an 
approximation to the true solution which can be used up to the double half 
rise time without exeeding a relative error of 0.1 %. The range of use is 
independent of the pulse time length. 

0.50 

0.25 

n=2 

n=l 

0.1 
0.00 

IO 0.00 0.50 1 .oo 

Fo = at/l2 Fo = at/l* 

0.50 

WI, 

0.25 

Figure 2: Thermal response curve for b = 0.1 , FOA = 0.5 Fo and adiabatic 
conditions, showing the true solution and different approximations 

Figure 3: Thermal response curve for combined heatloss and finite pulse time 
effects with FOA = 0.5F0, b = 0.1 and Bi = 0 or 1 
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Heat-loss 

The solution of the heat conduction problem in the presence of heat-loss from 
the sample surfaces is described by Eq. 15. Let 

@hl,n = 
t 

ct + Bij2 e-@n+l)t 

Then the n-th term of the sum in Eq. 15 can be rewritten to 

(19) 

where D, is a symbolic notation for the differential operator d/&. 
Taking finite pulse time effects into account, @,[,n has to be replaced by 

(21) 
Using 

DA+, 4 - Dvf(W 

and 

F(G) - 

(22) 

(23) 

the n-th term of the solution is transformed back to the time domain to 

The generating function ~3fpt,~ is 

%O = &[(l - qBi - Bi2Fo)F,- 

-(l + qBi)erfc (&) + 2Bi~e-~z~Fo] (25) 

with 

F 
rl 

= $Bi+Bi2FoerfC ‘7+Bi& 
4% > 

(24) 

(26) 

and 77 = n + l/2. Finally inserting h(Fo) = Cr=, h, into Eq. 8 yields the 
equation describing the time response curve. 

Since even the second term of the solution is a somewhat lengthy expression, 
the application of the derived formulas may be restricted to the first term, 
which is obtained by inserting 

ho = $[(l - Bi/2 - Bi2Fo)F1,2 

-(l+ Bi/2)erfc (A) + 2BiEem1/4Fo] (27) 
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into Eq.8. The effect of finite pulse time combined with heat-loss on the 
response curve is shown in Fig.3. The lower curve, which was calculated 
with Bi = 1.0 shows no deviation between the complete solution (c) and the 
approximation by one term (d) in a %-range exeeding the range of interest 
for the evaluation of measurements. The two curves begin to spread in the 
vicinity of Fo = 1.5. For a lower Biot-number (curves a and b) one term is 
sufficient to describe the thermal response curve up to its maximum. 

NUMERICAL APPROXIMATIONS 

The solutions of the heat conduction equation given in the preceeding sec- 
tions contain repeated integrals of the complementary error function, namely 
erfc(z) and i3erfc(z). Whilst numerical approximations for erfc(z) are given 
in every comprehensive work on numerical mathematics, the third integral is 
only available in the tabular form (Abramowitz and Stegun, 1965). To ease 
the numerical implementation, rational approximations will be given for these 
functions. 

Rational functions of the form 

f(x) = 2 a,xn, -p b,czrn (28) 
n=O m=O 

are very often used for the computation of functions in a certain interval. The 
main advantage is the short execution time combined with a high precision. 
The function i3erfc(z) was evaluated by rational Chebyshev approximation 
(Cody et al., 1968). The values given for erfc(z) are taken from Cody (1969). 

It may be remarked that the function F, defined in Eq. 12 can be trans- 
formed to 

F, = eTp2f F”et2 erfc< , (29) 

where < = ,~/a+ bifi. Th ere f ore the approximations given in Table 1 for 
the complementary error function can be simplified by the factor et2 to avoid 
computer overflow. 
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NOMENCLATURE 

x 
P 
cp 

a 

;: 
eco 
t 
to 
t l/n 
Fo 
tfl 

thermal conductivity 
density 
specific heat capacity 
thermal diffusivity 
sample thickness 
energy deposited per unit area 
excess temperature 
equilibrum excess temperature 
time 
specific rise time j2/a 
time needed to reach 8,,,/2 
Fourier-number t/to 
duration of triangular pulse 
fraction of pulse width at which apex occurs 
weighting factors 
heat transfer coefficient 
Biot-number al/A 
variable in the Laplace domain 
6 
Laplace transforms of 8, 6, 
differential operator a/& 
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erfc(x) = 1 - 2 kpjX2j/ 5 QjX2j, ILIT1 5 0.5 
j=O j=O 

:, 2.13853 3&37 3 1.895225;241 3 
(01) ( ) 

1 1.72227 57703 (00) 7.84374 57083 &) 
2 3.16652 89065 (-01) 1.00000 00000 (00) 

.46875 5 x < 4.0 

7.37388 83116 (00) 7.37396 08908 00 
6.86501 84849 (00) 1.51849 08190 01 
3.03179 93362 (00) 1.27955 29509 (01 
5.63169 61891 (-01) 5.35421 67949 (00 
4.31877 87405 (-05) 1.00000 00000 (00) 

-2i/Cj=o qjX_'j}, X 2 4.0 

0 -1.24368 544 (-01) 4.40917 061 (-01) 
1 -9.68210 364 (-02) 1.00000 000 (00) 

i3erfc(x) = 5 pjXj/ 5 qjXj, x < 0.8 
j=O j=O 

0 4.47996 17307 (-01) 4.76431 04987 (00) 
1 -7.68596 61317 (-01) 4.49348 48660 (00) 
2 4.71586 42365 (-01 2.65932 61331 00) 
3 -1.03965 92405 (-01 1.00000 00000 00) 

i3erfc(x) = $ J$opjx-2’/ J$o qjxq2j, 0.8 _< x 5 5.0 

0 5.90340 26845 (-03 

Table 1: Rational Approximations for erfc(x) and i3erfc(x) 


