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A promising new technique for detecting aircraft structural cracks is called thermal diffusivity 
imaging. A heat flux is applied to one surface of a structural area while the opposite surface 
temperature field is scanned with an infrared television camera. In theory, layer delamination or 
other material non-uniformities will produce changes in the material thermal resistance between 
source and detector. These changes will produce regions of lower temperature than the surrounding 
material at the rear surface of the laminate. The technique has several advantages over the other 
methods available for detecting structural problems in aerospace applications: it is capable of 
scanning large areas in a short time: it avoids the use of potentially hazardous radiation, and it does 
not require forcing the material to the level of failure. 

In the present paper, an effective thermal diffusivity model is used to provide estimates of the 
sensitivity of the technique. A solution is determined for the differential energy equation through 
the composite laminate which is subjected to flux type boundary conditions with a homogeneous 
initial condition. For a single material, this results in a compact mathematical solution which can 
easily be applied to the determination of both transient and steady-state thermal transport 
properties. For composites, the problem is more difficult but the application of the effective 
thermal diffusivity model greatly reduces the mathematical complexity. Thermal transport across 
a gap (delamination) is modeled as an optically-thin process and it is shown that thermal 
conduction is likely to be the dominant mode of heat transfer. 

As the United States commercial airline fleet ages, the question of structural integrity becomes 
extremely important (Derra. (1990). A recent v article indicated that the average 
age of the aircraft being flown by T.W.A. is 24+ years. Clearly this situation, which is typical of 
the industry, will not change substantially in the near future. New non-destructive test (NDT) 
techniques must, therefore, be developed for detecting material flaws before they become large 
enough to cause structural failure. One of the more promising new techniques for detecting 
structural cracks in composite laminates is called thermal diffusivity imaging. A uniform heat flux 
is directed onto one surface and the opposite surface is optically scanned to observe the temperature 
field. This method indicates regions of possible defects in much the same manner as the 
thermography method for detecting cancerous tumors. In this case, it is the body itself which acts 
as the heat source. In the present paper, the governing differential equations will be presented and 
applied to the case of a composite laminate which contains an air gap that simulates a delamination. 
This model will then be used to to estimate the thermography method sensitivity. 
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Good agreement results between prediction and experiment for transient thermal conduction 
problems if the analysis uses an experimentally determined value of thermal diffusivity. When the 
governing differential equation is examined, the reason for this is obvious--especially in the case 
of one-dimensional conduction. In terms of dimensionless quantities, the Fourier modulus is the 
only relevant parameter in the analysis at a particular position. Because the sample thickness can 
be measured and time is the independent variable, one can determine the thermal diffusivity 
directly from the temperature-time history at a given position in a sample. This position is usually 
the rear surface of the material sample. 

The radiant pulsed method has become the standard experimental technique for determining 
thermal diffusivity for a WMe range of materials (Taylor (1973), (1979, Lee and Taylor, (1976)). A 
pulse of radiant energy is deposited in a very short time on the front surface of a thin specimen and 
the rear surface temperature excursion is monitored. A correlation between a one-dimensional 
thermal conduction model and the experimental record yields the thermal diffusivity. One estimate 
claims that “about 75% of the free world’s thermal diffusivity values are currently being generated 
by this one technique” (Taylor, (1975)}. 

In recent years, the method has been extended to the case of transient thermal conduction in 
composite materials. Both purely thermal problems (Wright, &al., (1979, Tittle, (1965), Bulavin 
and Koscheev, (1965)) and ccupled thermal-mechanical problems (Anderholm, (1966), Hattman, et.al., 
(1971)) have motivated this interest. A number of theoretical studies (Schimmel and Donaldson, 
(1975), Schimmel, et.al., (1975), Donaldson, et.al., (1977)) and experimental measurements (Taylor, 
(1975), Larson and Koyama, (1966), Brandt and Havranek, (1976), Lee, et.al., (1975)) have clearly 
established that some sort of “effective parameter” can be used to characterize the transient 
temperature response of composite materials. 

The sensitivity of the composite effective thermal diffusivity to material delamination will be 
considered in the present paper. Both a step change in front surface temperature and a uniform 
heat flux applied at the front surface will be considered. The first case permits a simplified 
mathematical analysis but it is difficult to simulate in the measurement laboratory. Step changes 
are always difficult to produce and temperature step changes with out immersion are virtually 
impossible. The constant heat flux case can easily be simulated with electrical heating but it does 
not lead to a steady state condition for an adiabatic rear surface. This will be addressed by showing 
that the front and rear surfaces temperature increase linearly with time (ramp behavior). 

THEOFtY - 7HERiU4L MODELS 

Three different mathematical models can provide a basis for experimentally determining the 
thermal diffusivity of a material sample. The first is the radiant pulsed technique, the second is a 
step change in front surface temperature and the third is the application of a constant heat flux at 
the front surface. The rear surface of all three is considered adiabatic and the initial temperature 
is zero in all cases. The thermal diffusivity, a, has its usual definition: the ratio of the thermal 
conductivity, A, to the product of the density, p, and specific heat, C. These three cases are 
classical applications of the Sturm-Liouville system of linear partial differential equations. The 
first is an initial value problem while the last two are boundary value problems. Solutions can 
easily be obtained by separation of variables and expansion in Fourier sine/cosine series. To avoid 
repetition of the eigenvalues. a shorthand notation will be used in the last two models: 

(1) 
The first idealized case to be discussed is that of the radiant pulsed technique for determin& 

thermal diffusivity. The simplifying physical assumptions are that a planar, uniform pulse of 
energy is instantaneously deposited in a very thin region adjacent to the front surface of a thin, flat 
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sample and the temperature excursion ot the adiabatic rear surtace is monitored. in practice, the 

effects of extended pulse duration (Donaldson and Faubian, (1976)), pulse shape, and finite heat kSs.es 

(Heckman, (1976)) must often be considered but they will be neglected here. It has been shown 

(Heckman (1976) and Taylor (1973)) that the omission of these mechanisms does not severely degrade 
the quality of the experimental results. 

The deposition length, Xd is a region of unknown extent very near the surface in which the 
energy is instantaneously deposited by the incident radiant pulse. Although the actual deposition 
profile is exponential, It Is assumed that it is uniform on 0 < x c Xd. It is possible to determine T, 

through the use of a radiation calorimeter or other device. For this analysis, however, the need 
for specifying this parameter is avoided by using the average sample temperature at long times, T, 

It is clear from the application of the first law of thermodynamics that for zero losses: 

x.4 _ 

. . With respect to these assumptions, the solution of the system of equations at the rear surface, 
x = L, is (Donaldson and Faubian, (1976)]: 

T (L, t) 
n2f120t t 

Tm 
= 1 + 2 fw”e- $ 

n=l 

Rewriting slightly, the first few terms are: 

T (L, t) _ , _ 2 c e-&E _e-4%+e-9a^5_e-16a^S+ .,g 

Tm - 

where: 

(3) 

(5) 
The quantity indicated by Fol,2 is the Fourier number at the half-time, tl12 . This is the time 

required for the rear temperature rise (above initial) to reach one-half the final value, T,. It 

should be noted that the quotient of thermal diffusivity and length squared can be considered an 
inverse time constant. This observation will be used to advantage in later sections of this work. In 
terms of the experimental measurements, low temperature measurements can be made with a 
thermocouple and a recording oscilloscope or the more sophisticated digital data acquisition system 
(Taylor, (1965)). At higher temperatures, optical techniques are used. In the case of the recording 
oscilloscope, the average temperature, T,, is obtained from the difference of the base line and the 
scope retrace. If the above expression is solved for T(L,t)/T, = l/2, this corresponds to one 

half-time, or t = 1.0 . Solving the above equation results in Fo1,2 = 0.139 (Taylor, (1976)}. 

For the second idealized case, the front surface of the slab is subjected to a unit step change in 
temperature at t = 0 to Ts and held there. The slab rear surface is adiabatic for all times of 
interest. Applying physical reasoning, it is clear that the rear surface temperature will 

eventually rise to the level of the front surface in the steady-state for the no-loss situation imposed 
by the boundary conditions. The total solution is: 

T(x t) 
I = 

Ts 
(6) 
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at the rear surface, this becomes: 

T CL t) A= 1-4 co (_, )ne-$pt 
TS 71 n&o(2”+ 1) 

(7) 
This is given {Schimmel, et. al., (1975)) in a slightly different form with the definition of a modified 
Fourier modulus: 

T (L t) A= 

TS 
03) 

where: 

There is no physical reason for continuing to use this notation in terms of the half time, tt,; 

but it is instructive to compare the results from the various models in terms of a constant 

benchmark. The value of 8 = 0.139 112 should not change as a function of the particular model 
used for the analysis. If we let Ts = Tm, we can compare the results directly with the radiant 
pulsed method. The first few terms of the above series are the following: 

_giJ 

T(U) = 1 _&4-e -25a _&J 

Trrl 

+e 
3 5 

-7 + . . . 
I 

(10) 
Note that the series clearly converges rapidly for values of F on the order of unity or larger. A 
comparison of the values obtained for a single term, two terms, etc, is given by (Schimmel, (1990)) 

and it is confirmed that the series is well represented by two terms except very near the t = 0 
point, i.e., t = 0; in this region even the exact series solution requires a large number of terms. 

Unfortunately, although the results of the present model are useful for understanding thermal 
response, there are several experimental difficulties inherent in attempting to produce a constant 
temperature at the sample front surface. A much easier situation to generate in the laboratory is a 
constant heat flux at the front surface (e.g., electrical heating). Ideally. a constant temperature 
rear surface (e.g., constant-temperature bath) would be specified but this would require 
measurement of the energy removed by the cooling device -- a measurement which is inherently 
imprecise. The alternative is to consider the rear surface adiabatic as has been done . It should be 
noted that the assumption of an adiabatic rear surface in the current case is only valid for the short 
time domain. In the steady-state, losses will occur under the best of conditions. In the following 
paragraph, an alternative to both the previous methods will be explored and shown that it can be 
used both to determine thermal diffusivity in the laboratory and material delaminations in the field. 
Hopefully, this technique will form the basis for a non-destructive technique that can be deployed 
in the aircraft maintenance field. 

For the third model, the physical model once again consists of a constant property one- 
dimensional slab. A constant heat flux term is applied to the front surface while the rear surface is 

considered adiabatic. The solution for any position and time is given by: 

T(x,t) oct 

--=~+ 
co cosb tx) 

$2 c n*n 
n=O (11) 
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which converges to a transient plus a long term solution. There is a divergent component which 

increases with time so that steady-state does not appear to be a totally accurate term for the long 

term solution. It should be recalled, however, that a similar situation prevails whenever a surface 

flux boundary condition is applied to a one-dimensional solid. 

Rewriting the expression in terms of these three components: 

At the rear surface of the specimen, this is: 

(13) 
For comparison with the expressions given above, the first few terms can be expressed in terms of 

the previously defined quantities: 

T(L,t) at I 2 
_s5 ,-4& -965 -1665 

-- _q,L,n =yT-z fl2 --(e -T + 5 y6 +#.. 
) 

(14) 

This model can be used to determine the thermal diffusivity of a thin material sample which is 

originally in thermal equilibrium with its surroundings. Note that the assumptions are consistent 

with those of the radiant pulsed method provided that the time and temperature levels are similar. 

The difference of temperature rises predicted by equation (12) when evaluated at the front and the 

rear surfaces is: 

T(O,t)-T(L,t) = L 4 O" e-"f*oct 
-9,L/n 2 -3 ,_,(2n+l)* c- 

Clearly the transient solution in terms of the first few terms is: 
(15) 

T (ON-T (L,t) 
-q,L/n 

(16) 
and the long term component of the above equation slightly rewritten is: 

lim [T (O,t)-T(L,t) 1 = , 

t-1 -cl,L/2n ] - ’ 
(17) 

which permits direct comparison with the radiant pulsed method. The dimensionless temperature 

rise for the flux method also appraoches unity at tong times as does the pulsed method. Recall that 
this reference is used in lieu of an accurate calorimetric measurement of the incident pulse. 
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The general expression for the nondimensional temperature difference is thus rewritten: 

T (0, t)-T (L, t) 
-q,L/2n 

This can be compared with equation (3) from the radiant pulsed method. The remarkable 

similarity between the two indicates the characteristic response of the sample to heating. This was 

to be expected because of the notion of input and output functions related by a transfer function 

{Schimmel,(lQQO)). Either expression can be used to determine a from the temperature-time 

history of the surfaces indicated. Recall that the requirement to explicitly measure the initial 

temperature rise in the deposition region is avoided by the use of an averaged temperature in the 

radiant pulsed method. it would appear at first glance that one requires additional information (and 

thus introduces additional experimental error) for the flux method. This is fortunately not the case 

as we now proceed to show. 

Recall that the long term or “steady-state” temperature expression predicted by the constant 

heat flux method at the rear surface is: 

lim T(L,t) 

[ 1 = at 1 -_a 
t-*00 -9,L/n ~~ 6 

Thus, the rear surface temperature-time profile for long times is simply: 

lim T (L, t) = -qst _ -%L 
t-*oQ 

pCpL K = f3t +c1 

while that of the front surface is: 

lim T (0, t) = -2 + - -9sL 
t+= pCpL 3n = Bt + c2 

w 

(20) 

(21) 
The difference between the two is clearly a constant so, the product of the parameter B and the 

reciprocal of this term is: 

(++L] (-G) =25 
(22) 

But, B is simply the slope of the steady-state portion of the temperature-time curvehis ; a constant 

as the above expression indites (Figure 1). We can thus determine a/L*, from the steady-state 

portion of the curve by evaluating the slope. The front and rear surface temperature excursions 

are presented in Figure 1 along with a straight line representing the slope, B. Here, we continue to 

use tlR for comparison Purposes, so the quantity 1 is indicated as the independent variable. 
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FIGURE 1 

SURFACE TEMPERATURE RESPONSE 

No scale is used on the figure because it is simply to identify the transient and steady-state 

time regimes and front/rear surface temperature-time profiles. In terms of the electrical analog, 

the front surface temperature profile corresponds to a “lead” circuit while that of the rear surface 
indicates a “lag” circuit The difference between the two is a lead-lag circuit which is a common 
element in automatic control systems analysis. The important feature to notice is the relation 
between input (heat flux) and output (temperature-time) is a constant transfer function. Thus 
homogeneous and multi-material laminate.transient thermal conduction problems can be analyzed 

by the use of simple transfer functions between input and output (Schimmel (1990)). 

A general expression for the ratio of L2eff to a,ff can be determined {Schimmel, et al, 1975): 

For a three layer laminate, this reduces to: 
(23) 

(24) 

If this expression, is now substituted into the single layer expression for the same thermal 

boundary and initial conditions, the effect of varying the gap thickness can be determined. 
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TECWIQUE SENTMTYAND EAMMPLECAlCuuTKwv 

An example of the physical situation is given schematically in Figure 2. A panel joint is shown 
in its original condition and with a delamination as a result of a rivet which has failed in tension. 

STANDARD PANEL JOINT DELAMINATED PANEL JOINT 
FIGURE 2 

This is modelled as a thin air gap between two solid layers as indicated in Figure 3. The governing 
energy equation will now have an additional term because of the thermal radiation across the gap. 
Because the gap is assumed to be small, the process will be optically thin even if a radiatively 
participating gas is introduced intd the gap. Were this not the case, our linear analysis would not be 
able to handle the nonlinear coupled radiation-conduction heat transfer process even under steady- 
state conditions [Schimmel. et al, (1970)). 

0 L 
3-LAYER PROBLEM 

eff 

FIGURE 3 
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With the appropriate boundary and initial conditions, the general equation for a one-dimensional 
composite laminate consisting of n layers is: 

fi= 1 aT 
ax2 -- +qR aat O<x<L, Ott 

aT,o,t1 = 
ax 

-q 
S o<t 

ST,(L,U = 0 

ax 
o<t 

Ti(X,O) = 0 0~ xl L i = 1,2,-,n 
(25) 

Noting that the temperature and heat flux must be continuous at the interfaces indicates: 

Tj (Lj,t) = Tj+,tLj+j,t) 

aTj (Lj,t) 
hj ax 

aTj+l ILj+l 1 t, 

= hj+r ax 

(26) 
For the specific example being considered, the radiation flux term between layers 1 and 3, will be 
considered optically thin and we expect only solid radiative exchange between the surfaces. For this 
case, the radiative heat flux between gray diffuse surfaces is: 

u( T3" - Tf) 
qR = 1+1-l 4 

Sl e3 

where Q is the Stefan-Boltzmann constant and st is the surface emittance of layer i. 

If a Taylor series expansion is employed for Ts in terms of Tt , 

c = T; + 4T:(T,-T,) + ... 
The radiative heat flux can now be expressed in terms of an effective radiation conductivity 

qR 

where 

hR = 
4aT;L, 

Cl3 
where 

Cl3 = [& +& -‘I 

(29) 

(30) 

(31, 
Clearly this is not a thermophysical property in the usual sense but it permits us to make use of the 
notion of effective thermal properties for heat transfer through the three layer composite laminate. 
The total heat flux across the gap will consist of a sum of the conduction and a radiation components. 
Because the gap extent is considered small when compared with the gap length in the vertical 
direction, natural convection is not expected to be significant. Note that the presence of a 
radiatively participating gas in the gap will also not substantially change the total heat flux because 

(27) 

(28) 
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of the optically thin assumption. An estimate of the magnitude of the radiative heat flux component 
can be obtained by comparing the radiative and molecular conductivities for typical values of Tt and 

et3 as L2 is varied. This is presented in Table 1 for Tt = 300 K AND L2)*o indicates the value for 

which AR equals the molecular thermal conductivity (A2 = 0.026 W/m-K for air at 300 K). 

TABLE 1 

Gap required for equivalence between radiation and conduction heat transfer 

e1 =e3 Cl3 A R/L2 L2)eqr Cm 

1.0 1 6.1236 0.042 
0.5 3 2.0412 3.822 
0.2 9 0.6804 34.39 
0.1 19 0.3223 153.3 
0.05 39 0.1570 645.9 
0.01 199 0.0308 16815 

Note that even if both surfaces are black (et= l), a gap of nearly l/2 cm is required for the two 
conductivities to be of the same order of magnitude. Clearly a gap of this size would be detected 
visually. For the much lower emittances which are typical of aluminum, it is clear that the 
radiative component can be neglected. Increasing Tt to 350 K would reduce the gap size for 
equivalent conductivities by about 30%. Again, this is not expected to be a significant factor so the 
radiative component will be dropped in our estimate of technique sensitivity. 

The thicknesses and thermal properties of layers 1 and 3 will be taken to be the same. 
Layer 2 will be thin with respect to layers 1 and 3 and its thermal properties will be those of air at 
300 K. Using the expression presented above for three layers, there results: 

(32) 
where the substitution has been made: 

j3iCi= 2 

This can be expressed in a slightly more compact form: 

Gf 4 G 2 Ll L2 G 
CXeff 

=-+++- 
a1 a12 a2 

where: 

(33) . 

(34) 

(35) 
Note that the effective parameter is equal to the first term if L2 = 0 because bff = 2 x Lt Also 

note the continued use of the reciprocal of a/L2 to simplify the algebra. Rewriting this slightly 
to express this parameter as a function of the ratio of Lt to 4 yields: 

_gl_ Leff 2 
aeff K ( > 

= 1+ 2(?) + gy=$ 

(36) 
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Some typical values for aluminum (layers 1 8 3) are: A = 160.0 W/m-K and u = 0.67 cm2/s 

and air (layer 2) are A = 0.026 W/m-K and a = 0.24 cm2I.s. The value of a, 2 for this 

situation is approximately 4.0 x loo5 cm2/s. Results of the calculation for this choice of 
parameters are given in Table 2. 

TABLE 2 

Temperature-time slope as a function of dimensionless gap width 

424 0.005 0.001 0.005 0.01 0.05 0.1 1.0 

1.007 1.022 1.447 2.73 43.1 169 16750 

Note that a ratio of L2/Lt of only 0.001 is sufficient to produce an effective parameter change 

of more than 2%. Recalling that the reciprocal of this parameter is the slope of the temperature- 
time curve at the rear surface of the laminate indicates that the technique will have sufficient 
sensitivity to permit detection of very narrow gaps. This is not surprising when we recall the 
current biomedical uses of the technique. 

RESULTSANDCCMUSlCNS 

The NDT technique known as thermal diffusivity imaging or thermography appears to hold a 
great deal of promise for detecting structural failures in composite laminates of the type found in 
aircraft. The simplified model evaluated in the present paper considers both thermal conduction 
and optically thin radiation across an air gap between two lamina but shows that radiation is 
unlikely to be a significant transport mechanism at the temperatures of interest. The effective 
diffusivity model lends itself to an estimate of the technique sensitivity under typical operational 
conditions. It is shown that, within the validity of the model assumptions, the technique is capable 
of detecting very small delaminations. An experimental verification of the model is presently being 
carried out on a laboratory scale and field studies of the technique are planned for the near future. 
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