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Abstract 

The best governing equations for the steady state and cooling in a cylindrical aluminium 
bar have been determined with precision. As a first stage, a single exponential law was not 
found to be a good approximation for a direct calculation of the surface conductance 
coefficient, contrary to what had previously been found for iron. A more general theory to 
explain the dependence of the surface conductance coefficient on time position, and 
temperature could be based, in principle, on the use of the hypergeometric series. It would 
probably need a great deal of experimental data from several solids, both good and poor 
conductors. 

INTRODUCTION 

The surface conductance coefficient H, also called the convective heat 
transfer coefficient [l], is one of the more difficult thermophysical 
parameters to calculate because of its dependence on other variables such 
as the nature, shape, and conductivity of the material, and the temperature 
gradient set up in it. However, some easy approximations can be applied 
which enable the order of magnitude of H in a practical problem to be 
estimated. An example is Newton’s law of cooling: the heat flux across a 
surface is proportional to the temperature difference (T - To) between the 
surface and the surrounding medium. Assuming Newton’s law, the 
one-dimensional differential equation for the heat flow in a bar with no 
internal source of heat is given by [l, 21 

(1) 

where K = Klpc is the thermal diffusivity, K is the thermal conductivity, p is 
the density, c is the specific heat, p is the perimeter, and w is the 
cross-section of the bar. 

For steady state cases (dT/dt = 0) and for cooling (#T/dx* = 0) in the 
bar, one can readily obtain the value of H. 
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In the first case, the equation to be solved reduces to 

d2T Hp 
dx2-KwT=0 (2) 

where T is the temperature excess over the surroundings, i.e. the 
temperature of the medium To is taken as zero. The solution of eqn. (2) is an 
exponential law 

T = z exp(-mx) (3a) 

where 

&HP 
Kw 

(3b) 

In the second case, the equation to be solved is 

dT HPT=O --- 
dt cpw 

whose solution is 

T’ = T exp(-m’t) 

where 

HP m’=- 
CPW 

w 
In eqns. (3a) and (5a), Tl is the temperature of the first point in the bar 

and T’ denotes the cooling of a point i of the bar which started from the 
steady state at temperature T. Thus, because m and m’ can be determined 
experimentally, H can be obtained from either eqn. (3b) or from eqn. (5b). 
If it is supposed that the surface conductance is the same in both the steady 
state and in cooling, then the relationship 

WZ’ = Kt?Z2 (6) 

must always be satisfied. 
This theory is not always supported by experimental results. There is a 

strong dependence on the nature of the medium, as was shown in earlier 
studies [3,4], in which eqn. (6) was found to be valid for a good conducting 
material (iron [3]) but not for a poor conductor (a plastic [4]). A broader 
theory for the surface conductance has to be constructed in three stages: 
first, measuring steady states and cooling for a wide range of temperatures 
and materials; secondly, finding the best governing equation for the 
experimental results; finally identifying the coefficients obtained in the best 
fit with the unknown thermodynamic properties of interest, such as the 
surface conductance coefficient H. The final step is the most problematical, 
because, among other difficulties, it could require the modification of the 
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TABLE 1 

Physical properties and geometrical characteristics of the aluminium bar at 20°C 

Parameter a Value Parameter a Value 

P (kg mm”> 
c (J kg-’ K-‘) 
K b (J s-’ mm’ K-‘) 
K (dS_‘) 

2.7 x lo3 
8.96 x 10’ 
2.3 x 10’ 
9.5 x 1o-5 

L (m) 
d (m) 
P (m) 
w (m’) 

0.53 
6 x lo-’ 
9.4 x 1o-2 
7.1 x 1o-4 

a For definition of terms, see text. b At 100°C. 

“raw” linear Newton’s law of cooling to some more complex behaviour, 
leading to a different eqn. (1) for the heat flow. 

The present study is devoted to following the three steps outlined above 
in order to build up a theory, if possible, of the surface conductance 
coefficients in solids. A good conducting material with wide use in 
industry - aluminium -has been chosen as the starting point of this work. 

EXPERIMENTAL DETAILS AND RESULTS 

Table 1 lists the physical properties p, c, K and K of aluminium [5], and 
the geometrical characteristic L (length), d (diameter), p and w of the bar 
(in SI units). The basic experimental procedure was as described in ref. 6 
for an iron bar, but adapted to the present case. Briefly, the temperature 
was measured along the bar by thermocouples set in ten holes drilled 
perpendicularly from a generatrix to the axis. The thermocouples were 
connected to a digital thermometer. The distances (x in cm) between 
thermocouples are listed in the upper row in Table 2; the first thermocouple 

TABLE 2 

The temperature excess distributions (“C) corresponding to the ten steady states studied 

Steady Distance x (cm) 
state 
case 0 4 8 12 16 20 24 28 32 36 

I 73.5 64.7 57.0 50.9 45.0 40.4 36.2 33.1 31.1 28.7 
II 66.8 59.0 52.2 46.7 41.5 37.4 33.7 30.9 29.0 26.9 
III 57.2 50.5 44.5 39.8 35.2 31.7 28.5 26.1 24.5 22.6 
IV 52.6 46.6 41.4 37.3 33.3 30.2 27.3 25.2 23.8 22.2 
V 46.5 41.1 36.4 32.7 29.1 26.4 23.7 21.8 20.6 19.1 
VI 41.4 36.8 32.6 29.3 26.1 23.5 21.2 19.5 18.3 17.1 
VII 35.9 31.7 28.0 25.1 22.2 20.0 17.9 16.4 15.4 14.3 
VIII 30.7 27.2 24.1 21.7 19.2 17.5 15.7 14.5 13.6 12.6 
IX 25.0 22.2 19.7 17.8 15.9 14.4 13.0 12.0 11.4 10.6 
X 20.4 18.2 16.3 14.7 13.2 12.0 11.0 10.2 9.6 9.0 



346 J. J. Morales/Thermochim. Acta 219 (1993) 343-353 

was taken as the coordinate origin and located 5 cm away from the end of 
the bar, where a resistive coil connected to an a.c. variable transformer 
heated the bar. The bar was carefully isolated with asbestos cord, and the 
room temperature was measured with a thermometer inserted in a copper 
block away from the heat source. 

Steady state 

Table 2 lists the temperature at every point of the bar in the steady state 
for the ten cases studied. These cover a wide range of temperature excess 
over the surroundings of 53.1”C (from 73.5”C in case I to 20.4”C in case X). 
The ten cases were selected to give a temperature difference between 
consecutive cases of around 5-7°C at the first thermocouple. 

Following the prediction of the theory for the steady state described in 
the Introduction, the experimental data should satisfy a single exponential 
law such as eqn. (3a). Table 3 lists the results of this fit with the standard 
deviation u for T,, m and H, from eqns. (3a) and (3b). The last column is 
the sum of the squares of the differences between the experimental and 

theoretical values: sqdif = 2 (T,, - TJ. This is a measure of the goodness 

of the fit to an a priori law [7]. It can be seen that the fit is fairly good, the 
poorest results being for thetwo highest temperatures (cases I and II). The 
theoretical 7” values in Table 3 are slightly below the experimental r values 
given in the first column in Table 2, the difference increasing with 

TABLE 3 

Parrmeters for the fit of the experimental-steady state data in Table 2 to an exponential law 

(eqn. (3a)) 

Steady 
state 
case 

Parameter a 

T,*u -m*a HfUh 

sqdif 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 
IX 
X 

72.0 f 0.7 
65.4 f 0.7 
56.0 f 0.7 
51.4 f 0.7 
45.5 f 0.7 
40.6 zt 0.7 
35.2 f 0.7 
30.1 f 0.7 
24.4 f 0.7 
20.0 f 0.7 

2.77 f 0.06 
2.68 f 0.07 
2.73 f 0.08 
2.54 f 0.09 
2.6 f 0.1 
2.6 iz 0.1 
2.7 f 0.1 
2.6 f 0.1 
2.5 f 0.2 
2.4 f 0.2 

2.6 zt 0.1’ 

13.3 f 0.3 13.59 
12.5 f 0.3 11.19 
12.9 f 0.4 8.19 
11.2 f 0.4 7.76 
11.7 f 0.5 5.80 
11.7 f 0.5 4.11 
12.7 f 0.5 3.09 
11.7 f 0.5 2.31 
10.9 f 0.9 1.75 
10.0 f 0.8 1.13 

11.9 f 1.0’ 

a For definition of parameters, see text. ’ Eqn. (3b). ‘Mean value. 
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TABLE 4 

Parameters for the fit of experimental data for the cooling of the first point of the bar to an 
exponential law (eqn. (5a)) for four selected cases 

Case 
selected 

Parameter a 

T;*U -m’+u HfUb 

sqdif 

I 78.1 f 0.7 0.479 f 0.006 8.8 f 0.1 33.52 
III 62.3 f 0.7 0.486 f 0.008 8.9 f 0.1 19.02 
VI 43.6 f 0.7 0.44 l 0.01 8.0 f 0.2 9.01 
VIII 33.2 f 0.7 0.46 f 0.01 8.4 f 0.2 1.76 

0.47 f 0.02 c 8.6 f 0.4 c 

a For definition of parameters, see text. b Eqn. (Sb). ’ Mean values. 

temperature. The m values obtained show an upward trend with 
temperature, as do the H values calculated from eqn. (3b). There mean 
values are given in the last row of Table 3. 

Cooling 

Four of the ten cases studied in the steady state were chosen for the 
cooling study. Their temperature differences at the first point of the bar 
were about lo-20°C between consecutive cases. Table 4 lists the cases 
selected and the values obtained for the fit to an exponential law (eqn. 
(5a)). It can be seen that the cooling results behave quite differently from 
the steady state results: the experimental T’ values in Table 4 are 
considerably higher than the corresponding entries in the first column in 
Table 2; the m’ values fluctuate with no tendency to increase or decrease 
with temperature, as is also the case for H calculated from eqn. (5b); the 
sqdif is up to nearly three times greater (case I) than in the steady state. 
The fit of cooling to an exponential law is thus worse than for the steady 
state. The last row gives the mean values of m’ and H. Comparing this value 
of H (8.6) with that obtained in the steady state (11.9), one must conclude 
that either eqn. (6) is no longer satisfied because the H’ values are 
different, or eqn. (6) is satisfied within a large statistical error of about 
30%. The first possibility implies that if the single exponential law is 
sufficiently accurate in describing the steady state and cooling, then two 
conductance coefficients H and H’ must be defined for the same material, 
depending on the temperature regime established in the solid (whether 
steady state or cooling). This possibility does not seem physically 
convincing. The second possibility allows there to be only one H, 
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independent of the temperature regime, but a better fit to the steady state 
and cooling must be found. 

Seeking other solutions 

The next step is to attempt to fit the experimental data to a more 
accurate analytical expression, bringing the value of sqdifas close to zero as 
possible. The easiest choice is a double exponential, which was found to be 
the best governing equation for the steady state and cooling in iron and 
plastic bars [6,8], described by 

I& = a, exp( -m,x) + a, exp( -m,x) (7a) 

T’ = ai exp(-m:t) + a; exp(-mit) P) 

for the steady state and cooling respectively. The constants have dimen- 
sions of temperature and, for the initial values of x = t = 0, have to satisfy 

Tl = a, + a2 = T’ = a[ + ai (8) 

Table 5 lists the results of fitting the steady states of Table 2 to eqn. (7a). 
Clearly the exponent m2 of the second exponential is practically zero, eqn. 
(7a) being thus reduced to a single exponential plus a constant a,. The 
remaining exponent m, is practically constant within the range of 

TABLE 5 

Parameters for the fit of the experimental steady state data in Table 2 to a double 
exponential law (eqn. (7a)) 

Steady 
state 
case 

Parameter a sqdif 

a, f u -m,fu a2fu -m,fu 

I 56.9 f 0.1 4.4 f 0.1 
II 50.9 f 0.1 4.3 f 0.1 

III 44.0 f 0.2 4.4 f 0.2 
IV 38.7 f 0.2 4.4 f 0.2 
V 34.9 + 0.2 4.4 f 0.2 

VI 31.5 f 0.3 4.2 f 0.3 
VII 27.7 f 0.4 4.3 * 0.3 

VIII 23.2 f 0.4 4.3 f 0.3 
IX 18.4 f 0.5 4.3 f 0.3 
X 14.7 f 0.8 4.3 f 0.4 

a For definition of parameters, see text. 

16.8 f 0.6 
16.1 f 0.6 
13.4 f 0.6 
14.0 f 0.6 
11.7 f 0.6 
10.0 f 0.7 
8.3 f 0.7 
7.6 f 0.6 
6.7 f 0.7 
5.8 f 0.4 

0.59 
0.36 
0.31 
0.25 
0.23 
0.23 
0.17 
0.10 
0.09 
0.03 
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TABLE 6 

Parameters for the fit of experimental data for the cooling of the first point of the bar to a 
double exponential law (eqn. (7b)) 

Case 
selected 

I 
III 
VI 

VIII 

Parameter a sqdif 

a;* u -m;fa a; f fl -m;*u 

73.85 * 0.01 0.556 f 0.006 6.4 k 0.2 0.136 f 0.005 4.16 
61.0 zt 0.7 0.544 f 0.009 2.839 f 0.006 0.072 f 0.006 4.57 
30.55 f 0.01 0.607 f 0.009 14.5 * 1.0 0.28 zt 0.03 1.30 
33.0 f 0.7 0.48 f 0.02 0.563 f 0.009 0.01 f 0.01 0.80 

a For definition of parameters, see text. 

temperature studied. Because sqdifis very small for all the cases studied, 
the sum of a, and a2 gives the experimental value TI in the first column of 
Table 2 very accurately, as predicted by the left-most equality in eqn. (8). 

The results for fitting the cooling to a double exponential (eqn. (7b)) are 
shown in Table 6. The sqdif values are not as good as in the steady state 
(Table 5), but much better than for the cooling using the single exponential 
(Table 4). However, the sum of the coefficients ai and ai is greater than T’ 
in Table 4 and thus much greater than the experimental values Tl in the first 
column of Table 2. Therefore, for the cooling, eqn. (8) becomes 
T, < T’ < ai + ai. Both ai > al and rn: > ml, and given the magnitudes of 
these coefficients, the second exponential can be considered as a “correc- 
tion” to the single exponential law. 

The best fit for the steady state and cooling do not verify the single 
exponential law defined by eqns. (3a) and (5a), so it is not possible to 
deduce the surface conductance from eqns. (3b) and (5b). 

A diflerent approach 

A way to unify both sets of experimental result, i.e. a single exponential 
plus a constant for the steady state, and a double exponential (with one 
small exponential being a correction to the other) for the cooling; is to 
consider a more general nth order polynomial approximation to the data 

T=a+bx+cx2+dx3+... 

T = a’ + b’t + c’t2 + d’t3 +. . . cw 

for the steady state and cooling, respectively, where a, b, . . . d’ are 
constants to be determined by the experimental data. The fits for the two 
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TABLE 7 

Parameters for the fit of the experimental steady state data in Table 2 to a second order 
polynomial law (eqn. (9a)) 

Steady 
state 
case 

Parameter a sqdif 

a -b C 

I 73.14 2.17 0.026 0.81 
II 66.48 1.93 0.023 0.56 

III 56.94 1.67 0.020 0.51 
IV 52.33 1.47 0.018 0.38 
V 46.25 1.32 0.016 0.37 

VI 41.29 1.17 0.014 0.12 
VII 35.75 1.04 0.013 0.15 

VIII 30.56 0.87 0.010 0.17 
IX 24.89 0.70 0.008 0.10 
X 20.32 0.55 0.007 0.04 

a For definition of parameters, see text. 

situations are shown in Tables 7 and 8. A second order polynomial is 
enough for the steady state (Table 7), whereas fourth order is required for 
the cooling (Table 8). As can be expected from the low values that result 
for sqdif, the zero order constants (the a values in Table 7) not only fit the 
experimental value TI in the first column of Table 2 very precisely, but the 
full polynomial (eqn. (9a)) is quite good for the rest of the values of Table 2. 
This can be seen in Fig. 1, where the experimental data (asterisks) and the 
polynomial fit (continuous line) are practically indistinguishable. 

The values of sqdif in Table 8, and the zero order constants a’ being 
considerably higher than the experimental values 7” in the first column of 
Table 2, lead to the conclusion that the fit to the cooling data is not as good 
as to the steady state. Cooling is not as easy to interpret as the steady state 

TABLE 8 

Parameters for the fit of experimental data for the cooling of the first point of the bar to a 
fourth order polynomial law (eqn. (9b)) 

Case 
selected 

Parameter a sqdif 

a’ -b’ C -d’ e’ 

I 76.68 34.54 6.55 0.57 0.019 24.5 
III 60.62 27.25 5.14 0.45 0.015 23.5 
VI 43.24 18.78 3.58 0.33 0.012 6.3 

VIII 32.16 13.40 2.30 0.18 0.005 4.3 

a For definition of parameters, see text. 
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Fig. 1. Experimental temperature distributions for the steady states (*) compared with the 
fit to a second order polynomial (-). 

because of the thermal inertia of a solid against changes in its temperature 
regime [9]. This can be seen in Fig. 2, where the first two or three points 
show the effect of this thermal inertia, which can be considered as a 
transitory regime before starting the cooling proper. These initial points 
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Fig. 2. As for Fig. 1, but for cooling and fitting with a fourth order polynomial. 



352 J.J. Morales/Thermochim. Acta 219 (I 993) 343-353 

give the main contribution to sqdif. For the remainder of the 40 
experimental data points, the fit is just as good as in the steady state; one 
can see that experiment (asterisks) and polynomial fit (continuous line) 
coincide. 

At this stage then a general polynomial expression for the steady state 
and cooling has been found which is the best governing equation for both 
temperature regimes. The next step will be to relate the polynomial 
coefficients with the thermal properties of the solid in the framework of a 
more general theory which requires further development. 

DISCUSSION AND CONCLUSIONS 

One frequently finds that elementary functions such as exponential, 
logarithmic, trigonometric or related functions do not explain the be- 
haviour of some physical phenomenon satisfactorily because of the weak 
foundation of the approximations used in the theory. Perhaps the actual 
relationship between certain obviously related physical parameters is 
unknown, or perhaps the dependence of these parameters on time, 
position, etc. is very complex. In the present case of one-dimensional heat 
flow (eqn. (1)) Newton’s law of cooling has been assumed to be valid, 
although this law was obtained for cooling of a body “in the draught” [2], 
i.e. by force convection, and with a small temperature excess over the 
surroundings so that all the physical properties which appear in eqn. (1) 
may be considered constant. These assumptions may not be valid for most 
experimental situations and a more elaborate theoretical treatment is 
necessary. The results here for an aluminium bar show that a more complex 
expression can be found to fit the data, using the hypergeometric functions 
[lo] defined by the hypergeometric series 

ab x + a(a + l)b(b + 1)XZ + a(a + l)(u + 2)b(b + l)(b + 2& I I 

l!c 2! c(c + 1) 3! c(c + l)(c + 2) (10) 

The hypergeometric series is a generalization of the geometric series 
1+x+x*+x3+..., and reduces to this when a = 1 and b = c in eqn. 
(10). It satisfies the hypergeometric equation, a second order linear 
differential equation with variable coefficients. Evidently, when the 
hypergeometric series is applied to the differential equation for heat flow in 
the bar, the coefficients a, b and c in eqn. (10) have to be related to those of 
eqn. (1) in some way. 

Summarizing, if eqn. (1) is valid, and the steady state and cooling in a 
solid are fitted well by single exponentials such as eqns. (3a) and (5a) 
respectively, then one can obtain the value of the surface conductance H by 
using either eqn. (3b) or eqn. (5b), and as a further consequence, eqn. (6) is 
fully satisfied. If the best fit for both regimes is a double exponential, the 
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values of H can also be determined directly by the appropriate combination 
of the two exponents into only one, giving an expression similar to eqns. 
(3b) and (5b). H owever, if the best fits are different from these functions, 
then a value for H cannot be obtained directly, because eqn. (1) is not 
satisfied, and a more elaborate theory must be developed to determine the 
surface conductance. The solution could be to use the hypergeometric 
functions, but this treatment requires further deeper studies with more 
experimental data for different materials. 
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