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Abstract 

The shape index S is a characteristic parameter of a thermoanalytical (TA) curve. It is 
demonstrated that S is a linear function of the ratio of the temperatures T,/T, at two 
inflexion points of a TA curve. Both the intercept and slope of this function depend on the 
kinetic model. Therefore, it seems that all previously published papers neglecting the 
influence of the T,/T, parameter are probably erroneous. The S(T,/T,) relationship 
discussed in this paper permits certain conclusions about the most probable kinetic model 
to be made from a single TA curve. 

INTRODUCTION 

Thirty-five years ago, one of the most cited papers in TA kinetics was 
published [l]. In this paper, Kissinger presented simultaneously two 
different approaches to the kinetic analyses of TA data which affected the 
development of this field for many years. The first approach makes possible 
the determination of the activation energy regardless of the kinetic model, 
by recording multiple TA scans at different heating rates. The second 
approach was intended to determine the reaction order by analyzing the 
shape of a single TA curve, as shown in Fig. 1. While the first approach has 
been used successfully by many researchers to calculate activation energies, 
the second approach is rather problematic and there remain some doubts 
concerning its general applicability. 

Several papers have since been published concerning the shape-index 
analysis of TA curves [2,3] and of temperature-programmed desorption 
(TPD) curves [4-S]. Recently, we have analyzed the shape index of TPD 
data [9]. It was found that this concept can be very useful in elucidating the 
kinetic mechanism, particularly when no readsorption takes place. The aim 
of this paper is to discuss the applicability of this concept to the kinetic 
analysis of TA data. 
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Temperature 

Fig. 1. Graphical method for the determination of the shape index S from a TA curve. 

BASIC EQUATIQNS AND KINETIC MODELS 

The mathematical expression of the TA curve corresponding to the 
kinetic process is 

dafdt = Ae-“f(cr) (1) 

where dtv/dt is the reaction rate, A is the pre-exponential term and x is the 
reduced activation energy (X = E/RT). The function f(a) represents the 
mathematical expression of the kinetic model. The most frequently cited 
basic kinetic models are summarized in Table 1. 

In addition to the basic kinetic models which correspond to certain 
geometries of the reaction interface, there are also empirical kinetic models 

TABLE 1 

The basic kinetic models [lo] 

Model Symbol f(a) 

Johnson-Mehl-Avrami 
2-D reaction 
3-D reaction 
2-D diffusion 
Jander eqn. 
GinstIing-~rounshtein 

JMA(n) 
R2 

;1’“_-- T$-ln(1 - a)]‘-‘” 

R3 (l- :,2n 
D2 l/[-ln(1 - cy)] 
D3 3/2(1 - cr)“,[l - (1 - CX)‘“] 
D4 3/2[(1 - CX)-“~ - l] 
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TABLE 2 

The empirical kinetic models [lo] 

Model Symbol f(a) 

Reaction order 
Sestik-Berggren 

RW) (1- CY) 

SB(m, n) arn(l - cr) 

(Table 2). The kinetic exponent n can be an integer or a fraction for both 
the RO(n) and SB(m, n) models. It is evident that the RO(n) model 
includes both the R2 and R3 models for II = l/2 and 2/3, respectively. 
Recently it was shown [ll] that acceptable values of the parameter m for 
the SB(m, n) model are confined to the interval 0 Cm < 1. 

The aim of the kinetic analysis of TA data is to find the most probable 
kinetic model which gives the best description of the studied process and 
allows the prediction of the reaction kinetics under defined conditions. 

The shape index is defined according to Kissinger [l] as the absolute ratio 
of the slope of the tangents to the TA peak at the inflection points, which 
can be formulated analytically as 

(2) 

where subscripts i = 1 and i = 2 refer to the first and second inflection 
points, respectively. 

Equation (1) can be integrated to give 

(3) 

where p is the heating rate applied in a TA experiment and the term z(x) is 
an approximation of the temperature integral [lo]. 

Differentiating eqn. (1) with respect to time, and combining with eqn. 
(3), we obtain the equation for the derivative of the TA peak in the form 

(4) 

where f’(a) = df(cy)/da. From eqns. (2) and (4), a mathematical expres- 
sion for the shape index of a TA peak is obtained 

s = f(~l>g(~l)[f’(~l)go + wal>l 1 

I [” n(x2)l 2 
f(~2)g(~2>[f’(a2)g((Y2) + x27ex2)l x27w 

(5) 

where (Ye and a2 are the values of the degree of conversion at the first and 



TABLE 3 

Temperature integral approximations 

Author n(x) 

Doyle [12] 
Coats-Redfern [33] 
Gorbatchev [ 141 
Balarin [ 151 
Senum-Yang [ 161 

(2nd degree) 
Senum-Yang [16] 

(4th degree) 

l/x 
(1-2/x)/x 
l/(x + 2) 
(1 - 2/x + 6/x2 + 20/x3)/x 

(x +4)/(x2 + 6x + 6) 

(x” + 18x2 +88x + 96)/(x4 +20x’ + 120x’ +240x + 120) 

second inflection points of a TA peak corresponding to the roots of the 
equation 

where f”( (u) = dZf( cu)/d cy2. From eqns. (5) and (6), it follows that the value 
of the shape index is affected by the term a(x). There are many 
approximate expressions of E(X) in the literature (see Table 3). According 
to our experience, the 4th”order rational expression of Senum and Yang 
[16] is relatively simple, and precise, and gives sufficiently accurate results. 

THE SHAPE-INDEX ANALYSIS 

It is important to note that both the shape index and the temperatures 
corresponding to the in~ex~on points can easily be dcterm~ned from an 
experimental TA curve (or its differential form), as shown in Fig. 1. From a 
practical point of view, it is useful to plot the shape index as a function of 
the inflex temperature ratio (7;/1;) for a given kinetic model. This 
dependence corresponding to the first-order reaction RO(1) is shown in 
Fig. 2 for approximations of the temperature integral given in Table 3. It is 
obvious that the S(T,/T,) dependences calculated from eqns. (5) and (6) 
using the Doyle [12], Coats-Redfern [13] and Balarin [15] approximations 
differ considerably from the more accurate n(x) term calculated according 
to Senum and Yang [16]. 

Thus the equation for the shape index published by Kissinger [l] cannot 
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Fig. 2. The influence of the x(x) term on the S(T,/T,) dependence. The following 
approximations are used: a, Doyle [12]; b, Balarin [13]; c, Senum-Yang 4th-degree [16]; d, 
Senum-Yang 2nd-degree [16] (broken line); e, Gorbatchev [14]; f, Coats-Redfern [13]. 

give correct values of S; nor can that published later by Criado et al. [2] 
because of the Coats-Redfern [13] approximation used in their derivation. 
The equation for S derived by Ibok and Olhs [6] for TPD, assuming the 
Doyle approximation [12], is even more problematic. In later papers 
published by Criado et al. [7,8], the temperature integral was well 
approximated by a more complicated series, but unfo~unately the 
multiplicative factor ~~~~(~*)/x~~~~~)] is still missing from their equation 
for S. Therefore, all these previously published results are probably 
miscalculated. 

It should be stressed that if a good approximation of the temperature 
integral is used, e.g. the 4th-degree Senum and Yang formula [16], then the 
solution of eqns. (5) and (6) leads to a linear relationship between S and 
TJT, for all the kinetic models summarized in Table 1, as shown in Fig. 3, 
From an inspection of Fig. 3, it can be seen that the S( G/T,) plots of the D3 
and R3 models are identical. In addition, there is just one common curve 
corresponding to the JMA(n) model, regardless of the value of kinetic 
exponent II. The S( T,/T,) functions cannot be calculated for the D2, D4 and 
RO(n zz l/2) models because the second inflexion point does not exist. 

It was found that the linear relationship of the shape index versus the 
Tz/K ratio can be described by the equation 

s = S” + K[(T,IT,) - l] (7) 

The intercept S” in eqn. (7) corresponds to the shape index for the infinite 



110 J. Mrilek/Thermochim. Acta 222 (1993) 105-113 

0.2 +n--n-Tll-l-l-n-l-n I I 1 , I I I I I I I r I , I I 1 I I I , TT- 

1.00 1.10 1.20 1.30 1. 

G/G 
0 

Fig. 3. The dependence of the shape index versus the ratio of temperatures at inflexion 
points plotted for the RO(n), D3 and JMA(n) models. 

reduced activation energy x. In this case 

lim [xX(x)] = 3 
1-m 

and, therefore, eqn. (5) can be written in the form 

(8) 

The values of a: and a; corresponding to x + 03 are obtained from eqn. (5) 
rewritten in the form 

f’(cZ~)g(cX:)[f’(CY;)g(cX;) + 31 +f”(a~)f(cX~)g”(cX~) = -1 

These parameters are summarized in Table 4. 

(IO) 

In Fig. 4, both the intercept and the slope corresponding to eqn. (7) are 
plotted for the RO(n) model as a function of the kinetic exponent. The 
filled squares show both the D3 and JMA(n) models which can be 
considered as special cases of the reaction order model RO(n). This is in a 
good agreement with previous results [17-201. 

Kissinger [l] suggested a simple relationship between the shape index 
and the kinetic exponent for the RO(n) model of the form S = 0.63n2. This 
relationship is shown in Fig. 5, plotted as the broken line. The solid lines in 
this figure were calculated using eqn. (7) for different values of the TJT, 
ratio. It is evident that the Kissinger relationship cannot be successfully 
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TABLE 4 

The values of a! at the inflexion of a DSC curve for x -+ m 

Model *1 
m 

a2 

JMAfn) 0.317 0.927 
R2 0.438 
R3 0.387 0.982 
D2 0.528 
D3 0.387 0.982 
D4 0.464 

RO(n) a l- 
n-11((n2+2n-l-4/n-7)“2 “+l 

4n-2 1 

a This equation is valid for n f l/2 and n # 1. 

used for the estimation of the kinetic exponent because it does not take into 
account the effect of T,IT,. However, the s(n) dependences plotted as solid 
lines in Fig. 5 are very useful for the estimation of the kinetic exponent for 
the RO(n) model, provided that both the shape index and T,/T, have been 
determined from the TA curve. 

Figure 6 shows the S versus T,/T, dependences for the SB(m, n) model. It 
is clear that for a given value of the parameter II, the shape index increases 
with m. This figure also clearly demonstrates the flexibility of the SB(m, n) 
model: by combining both kinetic exponents m and II, we can obtain a 

ZI 
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Fig. 4. The dependence of the parameters of eqn. (7) on the kinetic exponent for the RO(n) 
model. The solid squares correspond to the D3 and JMA(n) model, respectively. 
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Fig. 5. The S(n) plot for the RO(n) model (solid lines) calculated by eqn. (7) using data 

from Fig. 4. The numbers correspond to the values of G/T,. The dependence proposed by 
Kissinger [l] (see text) is shown by the broken line. 
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Fig. 6. The S(T~~T,) dependence for the SB(m, n) model where n = 1 (broken lines) and 
n = 2 (solid lines). The numbers correspond to the value of the parameter m. 



relatively broad range of S values for a given T2/TI ratio. This range of the 
shape index evidently includes all the kinetic models discussed. 

It has been demonstrated that the shape index is a linear friction of the 
~/~~ ratio for a su~~~e~t~y accurate a~~~ox~rnat~o~ of the t~rn~~rat~re 
integral term Z(X). From this point of view, shape ~~~~ys~s of a TA curve 
can give us a basic idea about the most probabte kinetic model. 
~ever~e~ess, in order to verify the most suitablie kinetic model, a ~rnFlet~ 
kinetic analysis [2-I] of the experimental data should be performed. 
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