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Abstract 

A new, improved variant of a method for evaluating the non-isothermal kinetic 
parameters (Urbanovici and Segal, Thermochim. Acta, 141 (1989) 9) using integration 
over small ranges of variables is presented. By applying the method to a theoretical curve, 
values of the non-isothermal kinetic parameters in good agreement with those used for 
modelling were obtained. 

INTRODUCTION 

In non-isothermal kinetics, the programmed temperature T is usually 
given by 

T = 7;, + Pt (1) 

where 17;, is the initial temperature and /3 the constant heating rate. Because 
of thermal changes occurring in the investigated samples, the true sample 
temperature differs from the programmed value, being expressed in a 
modified form of eqn. (1) [2] 

T = ‘T;, + /3t + s(t) (2) 

where the supplementary term s(t) accounts for this deviation. 
In order to derive the non-isothermal kinetic equations based on 
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relationships (1) and (2), we shall begin with the general rate equation 

da 
z = Af(a)e-E’RT (T = const) (3) 

with f(a) being given as [3] 

f(o) = (1 - ayam[-ln(1 - cr)lp (4) 

Applying eqn. (3) to the classical non-isothermal change, one obtains [4-71 

da dt = Af((y)e-~~R(X~+P~) (5) 

From eqn. (l), dT = p dt; and by changing the variable t with the variable 
T, eqn. (5) can be rewritten in the form 

The integral form of eqn. (6) is 

(7) 

To a certain extent, eqns. (6) and (7) are used erroneously as non- 
isothermal expressions; they are strictly correct for only s(t) = 0 in 
relationship (2). In order to obtain the correct non-isothermal kinetic 
equation, relationship (2) should be used. 

Thus, the classical non-isothermal change applied to eqn. (3), taking into 
account relationship (2), leads to 

da dt = Af(~)e~EIR(7i~+pr+~(r)) (8) 

In order to substitute t for T, by differentiation of eqn. (2), one obtains 

dT = p dt + i(t) dt (9) 

and 
dT 

dt = p + i(t) 

Incorporating this into eqn. (8) 

(10) 

(11) 

which is a corrected non-isothermal kinetic equation, the true heating rate 
being p + i(t). 
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The complication introduced by the supplementary term s(t) in eqn. (11) 
can be avoided by using its integration over small ranges of the variables 
[l, 21. In such a way, and after performing the detailed calculations from 
eqn. (ll), by integrating one obtains 

ePEIRrdT 

where &, the local heating rate in the range (Y E [Q CQ] is given by 

Z - 7; 
Plk = ~ 

tk - t, 

(12) 

(13) 

Using eqn. (12) corrects for the deviation of the true heating rate with 
respect to the programmed value. In eqns. (6) and (7), such a deviation is 
not taken into account. 

A new method for evaluating the non-isothermal kinetic parameters 
starting from eqn. (12) will now be described: the result will be a simplified 
variant of the method described in ref. 1. 

DESCRIPTION OF THE METHOD 

The method is based on eqn. (12) and differs from that previously 
described [l] in the integration procedure. In the earlier variant, integrating 
eqn. (12) gave 

(14) 

To first approximations 

T =rI+Tk 
rk 

2 

(17) 

(18) 

Because the values of &k and r;k should be recalculated for each interval 
[cx~, (Yk], each iteration of the procedure requires a considerable calculation 
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effort. The new variant uses better approximations for the integrals from 
eqn. (12) which substantially reduce the calculation time. 

In order to approximate the integral of the right-hand side of eqn. (12), 
one must consider the previously determined [8] relationship 

with rk given by eqn. (18). The term &[E(& - r)/RTfk)]* is a correction 
term with respect to the approximation (14). 

The integral of the left-hand side of eqn. (12) can be approximated as 
follows (see the Appendix) 

1 + (ak - %)* 2f’2(atk) -f(% ak)flr(aik) 

24 f%%k> 
(20) 

with (Y,k given by eqn. (16). Equation (20) can be compared with eqn. (14). 
A supplementary term with respect to eqn. (14) should be noted. 

By introducing the notations 

q1w, 7;, T,)=l+z 
1 [ yPk T)] 

(21) 

and 

q2(4 my P, a,, %> = 1+ 
cak - d2 2f ‘*bk) - f (a,k)f”(%k) 

24 
f *hk) 1 (22) 

and taking into account relationships (16) and (18), relationship (12) can be 
rewritten 

(23) 

or by taking logarithms and rearranging 

Equation (24) is the fundamental relationship for the proposed procedure. 
In order to determine the values of the non-isothermal kinetic 

parameters, N pairs ((Y,, C_X~) and N equations of the form of eqn. (24) 
should be considered. Applying the least-squares method, one obtains 

S=g(lnA+lnf(a,,)-&-In(E)&-ln[ 
q2@, m, P, %, ak) * 

r=l k I %(& 7;) T,) 1 
(25) 

Minimization of the sum S allows the values of the non-isothermal kinetic 
parameters to be obtained. 
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In order to simplify the notations, we introduce 

q(i, k E, n, m,p) = ln [ 
q*h m, P, a,, 4 

ql(E, T,‘, G) 1 
Relationship (25) can then be applied in the following cases. 

Determination of the values of A and E for a known conversion 
function f(a) 

The minimization conditions of the sum S 

dS 
-=O 
dlnA 

6JS -_= 
dE 

0 

are actually equivalent to the linear system in In A and E 

N 1 
NlnA-EC----= gin 

(& - %)Pk 

,R7;, 1 (Tt - T)f (4 
+ q(i, k, E, n, n, P) 

(lnA)Lg-&-)+E$(&)’ 

215 

(26) 

(27) 

(28) 

Pa) 

In order to solve this system, we propose the following iterative 
procedure. 

Iteration (1) 
For q(i, k, E, n, m, p) = 0, we solve the system and obtain the values In A(‘) 
and E(l). 

Iteration (2) 
The value q(i, k, E(l), n, m, p) is calculated. By solving the system we 
obtain the values In A(*) and EC*). 

Iteration (j) 
The value q(i, k, EC’-*), n, m, p) is calculated. By solving the system we 
obtain the values In A(') and E(l). 

The iterations are stopped for 

Iln A(‘) - In A(‘-‘)1 < el (30) 

IE(/) _ EC/-‘11 < E2 (31) 

This procedure can be applied in order to select the best conversion 
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function. For each tried conversion function, the calculated In A and E 
values are used to evaluate S. The most probable conversion function 
corresponds to the lowest value of S. 

Simultaneous determination of A and E, and of the conversion function 

In this case, one has to solve iteratively the following linear system of five 
equations with five unknowns 

dS - = 0; 
X3 

- 0; 
dS A!3 dS 

JlnA z- am- 
- 0; - 0; 

ap- 
-0 

z- (32) 

For example, consider the most usual case, m =p = 0; and thus 
f(a) = (1 - (Y)~. In this case, the system of eqns. (32) reduces to a system of 
three equations: 

N In A + n 2 ln(1 - CQ) - E $ & 

= 2 In (i - %)hk 

rk 

N 

(334 
1 

T _T +&(iJAn) 

k I 1 

In A 2 lIl( 1 - a&) + II 2 ln(l - c&k) - E $ j&y ln(l - &k) 

(33’4 

(33c) 

In order to solve this system of equations, the following iterative procedure 
is applied: 

Iteration (1) 
The system (33) is solved for q(i, k, E, m) = 0. The values In A(‘), n(l) and 
E(l) are obtained. 

Iteration (2) 
The value q(i, k, E(l), n(l)) is calculated and then the system (33) is solved. 
The values In AC2), nC2) and EC2) are obtained. 

With the values nCJP’) and EC’-‘), we can calculate q(i, k, El-‘), rz-l, and 
then solve the system (33). The values In A('), n(‘) and E(l) are thus 
obtained. The iterations are stopped when conditions of the form (30) and 
(31) and a new condition 
In”’ - n”-“l < c3 (34) 
are fulfilled. 
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TABLE 1 

Combinations of (LY,, (Ye) and the corresponding (7;, Tk) for N = 6 

N i k 17;lK K./K 

1 0.10 0.25 424.115 438.021 
2 0.20 0.40 434.421 446.374 
3 0.30 0.55 441.113 453.090 
4 0.45 0.70 448.717 459.438 
5 0.10 0.85 455.198 466.670 
6 0.75 0.95 461.657 474.163 

The minimal value of N is 3 and the maximal value could be 15-20 (in 
such conditions one needs a large number of calculations). According to 
our experience, values of N located in the range 6-9 are reasonable in order 
to yield significant results if the ranges cover almost all the range of 
variations. 

The difference ?: - Tk should fulfill the condition 

lOK<T,-rIl5K (35) 

APPLICATIONS 

The method was applied to a theoretical curve obtained with the 
following values for the kinetic and operational parameters [l]: 
E = 25.00 kcal mol-‘, A = 6.10 min-‘, n = 1, p = 10 K min-’ and with 
R = 1.986 cal mol-’ K-l. 

The unique value considered for the local heating rate, p = 10 K min-‘, 
does not influence the result of this verification. The (a, T) data for the 
modelled curve were taken from ref. 1. Table 1 lists the data used to check 
the method for N = 6. Using these data to solve the system (33), the results 
listed in Table 2 were obtained after three iterations, showing that three 
iterations are enough to fulfill the conditions (30), (31) and (34), and that 
the values of the non-isothermal kinetic parameters agree satisfactorily with 
those used to obtain the theoretical curve. 

TABLE 2 

Values of the non-isothermal kinetic parameters after 3 iterations 

j (iteration) E”‘/(kcal mol-‘) n’/’ A”‘/(min-‘) 

1 26.14 1.165 2.40 x 10” 
2 25.43 1.026 9.82 x 10” 
3 25.49 1.032 1.04 x lo’* 
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In ref. 9, we report the application of the described method to construct 
an experimental curve. Significant differences were found between the 
values of the non-isothermal kinetic parameter estimated using local 
heating rates and those estimated using the programmed heating rate. 

DISCUSSION 

Comparing the method described here with the variant described in ref. 
1, it is apparent that both variants are based on eqn. (12) obtained from 
eqn. (11) by integration over small ranges of variables and using local 
heating rates, and that both variants use an iterative procedure. However, 
in the first variant [l] the values of CQ and Tr’k are recalculated at each 
iteration, while in the new variant the term q(i, k, E, ~1, m, p) is re- 
calculated. 

Because the first variant requires the recalculation of (Y,k and rk, it 
follows that the second variant has a lower calculation effort. However, a 
disadvantage of the new variant lies in its relatively lower precision as a 
result of approximations (18) and (20). 

CONCLUSIONS 

A variant of an iterative integral method for evaluating the non- 
isothemal kinetic parameters has been described. Despite its lower 
precision with respect to the variant described in a previous work [l], the 
method is suitable for use due to the lower calculation effort required in its 
application. 
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APPENDIX 

In order to calculate the integral J:: da/f(a) we shall try an approxima- 
tion of the form 

(Yk - Cy, + U 

f (%k) 
(Al) 
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where a is a correction term which depends on E and (Y,~ where 

ak - a, 
E=- 

2 

Because 

a, + ffk 
(Y,k =- 

2 

one can write 

ff, = (Y,k - & 

CY k = (Y,k + & 

With these notations, eqn. (Al) takes the form 

I 

%p+e da 2r + a 
-=- 

Q++F f-b> f&k) 

Taking the derivative with respect to E 

1 1 
+-= 

2 + a/de 

f(alk + &) fhk - ‘$ f hk) 
After developments in Taylor series [lo] of the functions 

1 1 

fblk + &) and f @Y,k - &) 

around the point (Yjk, and keeping the first four terms, one obtains 

1 

f @,k + &) 

and 

1 

f hk 
Taking into account eqns. (A8) and (A9), eqn. (A7) takes the form 

da (l/f hk))“= E2 

( 

2f ‘hk> - f (a,k)f”(a,k> 

ii= l/f (%k) f2hk> 
) 

Integrating eqn. (AlO) gives 

E3 2f ‘hk) - f (ark)f”(alk) + c 

f’bylk) 

W) 

W) 

(A4) 

(W 

(A61 

WY 

(A8) 

(A9) 

( fw 

(All) 

where C =0 for E+O and a+O. 
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From (All) and using the initial notations, relationship (Al) becomes 

I 

ak dff (Yk -pi -=------ 
[ 
1 + (% - QY,)* 

( 
2f’(%) -f(%Jf”(~Lk) 

f(a) f(%) 24 f *bJ >I 0.w a, 
For f(a) = (1 - (Y)~, the particular form of eqn. (A12) is 

I 

w da 

a, (1 - ay = (:L,:;E 

n(n + 1) ((Yk - (Y,)2 

24 (1 - a,,‘)* 1 (A13) 


