THERMOCHEMICAL AND SPECTROSCOPIC PROPERTIES OF **TRANSITION METAL COMPLEXES** PART III^I. COMPLEXES OF COBALT HALIDES WITH TOLUIDINES

6. BEECH, G. MARR, AND B. W. ROCKETT The Polytechnic, Wolverhampton (England) (Received December 29th, 1969)

ABSTRACT

Heats of decomposition and spectroscopic results for some solid toluidine complexes of cobalt halides are reported. The results are interpreted in terms of "Soft and Hard Acid and Base" concepts. The softness of the central metal atom increases as less electronegative ligands are attached. This was supported by measurements of the spectroscopic covalency parameter, B' , which decreases in the order $Cl > Br > I$. Comparisons are made with some previously published data.

INTRODUCTION

Recently¹ we have reported the thermochemical and spectroscopic properties of some cobalt (II) complexes with chloro- and fluoro-substituted anilines. We now report data concerning the thermal decomposition of the analogous toluidine complexes. The toluidines are more basic² than the corresponding halogenated anilines and it would be expected that the complexes should be more covalent. We have also recorded the spectroscopic properties of these complexes, derived apparent crystalfield parameters and attempted to correlate these with the respective heats of decomposition.

EXPERIMENTAL

Preparations

The preparations of the complexes have been described previously³. The compositions were checked by weight-loss measurements (Table I). The compounds were hygroscopic and were stored in a desiccator until required.

Calorimetry

A Perkin-Elmer Differential Scanning Calorimeter (DSC-1B) was used for the thermal measurements. All of the decompositions were carried out under dry nitrogen at a flow-rate of 20 ml. min^{-1} . The samples were encapsulated as previously described⁴ using loose-fitting domed aluminium covers. The measurements of peak areas were made with a planimeter and the calorimeter was calibrated by the heat of fusion of high purity (99.99%) indium (m.p. 429°K). Uncertainties are quoted as standard deviations of the mean.

TABLE I

HEATS OF DECOMPOSITION OF Co L_2 X_2

L^a	X	Weight loss (%)		ΔH_1	T_i^b	T_p^b	T_f^*
		Obs.	Calc.	$(kJ mol-1)$		(X^{\bullet})	
						500, 515	
o -Tol	\mathbf{C}	61.8	62.3	140 ± 4	460	520, 535	555
						520	
m -Tol	C1	62.5	62.3	162 ± 2	455	525	540
						520	
p -Tol	\mathbf{C}	62.4	62.3	165 ± 3	460		560
						540	
o -Tol	Br	49.7	49.5	$168 + 4$	470	530	540
m -Tol	Br	23.8 49.6	24.7 49.5	[102±3] 142 ± 4	470	525	535
				$40 + 2$		595	
					570		610
						605	
						490	
o-Tol	1	41.0	40.6	$163 - 4$	450	530, 550	570
						490	
m -Tol	\mathbf{I}	39.6	40.6	121 ± 4	460		545
						540	
						500	
p -Tol	I	41.5	40.6	145 ± 4	460	520	555
						545	
						525	
An	CI)			$149 + 2$	460	555	570
An		$Br \ Ref.$ Ia		164 ± 2	440	520	540
					460	500	525
An	I			$140 - 4$			
					490	600	630

[&]quot;Ligand abbreviations in Tables I-III are as follows: o -Tol = o -toluidine; m -Tol = m -toluidine; p -Tol = p-toluidine; An = aniline; o-ClA = o-chloroaniline; m-ClA = m-chloroaniline; p-ClA = $= p$ -chloroaniline. P , T_p , and T_f refer to the temperature at which the recorder pen first departs from the baseline, the peak maximum, and the point at which the pen rejoins the baseline.

Spectroscopy

The electronic spectra of the complexes were recorded between $5,000 \text{ cm}^{-1}$ and 30,000 cm^{-1} using a Unicam SP700 spectrophotometer. The samples were prepared as Nujol mulls by the method of Wasson⁵. The toluidine complexes possess³ an approximately tetrahedral structure about the cobalt atom and the apparent crystal field parameters were calculated using a tetrahedral model. The absorption bands were usually split by spin-orbit coupling. We have assumed that the numerical averages of the components of each of the two main bands corresponded to the transitions from ${}^4A_2(F)$ to ${}^4T_1(F)$ and ${}^4T_1(P)$ levels and these are referred to as v_2 and v_3 , respectively⁶. The calculations of $10D_q$ and B' (Table II) were made with the IBM 1620 Computer at this College.

TARLE II

*Using results from Ref. 9.

RESULTS

Thermal measurements

Each of the complexes decomposed, ultimately, to the solid halide by reaction (1) with the exception of

$$
\text{Co } L_2 X_2(\text{cryst.}) \to \text{Co } X_2(\text{cryst.}) + 2L(g) \tag{1}
$$

 $dipromobis(p-toluidine) cobalt(II)$ which evolved white fumes during its decomposition and vielded unidentifiable products. The m-toluidine (m-Tol) complex, $Co(m-Tol)$, $Br₂$, decomposed in two stages. The first peak in the thermogram was accompanied by a weight-loss of 23.8%, after which a deep blue liquid was formed. Possibly, this decomposition occurred by reactions (2) and (3). It is probable

$$
\text{Co (m-Tol)}_2 \text{ Br}_2 \text{ (cryst.)} \rightarrow \text{Co (m-Tol)} \text{ Br}_2 \text{ (l)} + m\text{-Tol} \text{ (g)}
$$
 (2)

$$
Co (m-Tol) Br2 (l) \rightarrow Co Br2 (cryst.) + m-Tol (g)
$$
 (3)

Thermochim. Acta, 1 (1970) 247-252

that many of the other decompositions reported here could proceed by a similar route but the thermograms were insufficiently well-resolved to confirm this suggestion. The heats of reaction and temperature parameters are shown in Table I, together with the results for the aniline complexes reported previously \mathbf{S}^1 , for comparison.

Ideally, the heats of reaction should be corrected to the gas phase but this is not possible since the heats of sublimation of ML_2 , X_2 (cryst.) are not known. The heat of reaction (4), $AH₄$ may be calculated

$$
ML_2 X_2 (cryst.) \to MX_2 (g) + 2L(g)
$$
 (5)

from a knowledge of the heat of sublimation⁷ of MX_2 . This enthalpy change will differ from the analogous reaction of (4) in which $ML_2 X_2$ is gaseous by the heat of sublimation of the complex but since the complexes are all of a similar structure, it is probable that the variation **in heats of sublimation wiil be small. Also, the heats** of reaction (5), ΔH_5 , may be calculated from reactions (1) and (6)⁷.

Co L₂ X₂ (cryst.)
$$
\rightarrow
$$
 Co²⁺ (g) + 2 X⁻ (g) + 2 L (g) (5)

$$
Co X2 (cryst.) \to Co2+ (g) + 2 X- (g)
$$
 (6)

No attempt has been made to correct the heats of reaction to standard conditions because the heat capacity data are not available. The decompositions all occurred over a similar temperature range so that the corrections would be expected to be small. Some solution calorimetric measurements have been reported by Ablov et al.⁸ for certain of these complexes $(X = CI; L = 0, m$ -Toluidine; $X = Br, L = p$ -Toluidine; $X = I$, $L = p$ -Toluidine). The values of AH_1 were derived by these workers but they are all higher than the values reported here. One possible explanation is that a heat capacity term, which is required for correction to room temperature, may be large. Since it is not possible to measure the heat capacities of the complexes within the range of decomposition, we were not able to correct our measured enthalpy changes_

Specrroscopic measurements

The spectroscopic results are shown in Table II. As an indcpendent check on the validity of our calculations, we have also used some data reported by Ferguson⁹ for single crystals of dichlorobis- $(p$ -toluidine)cobalt(II). We used a combination of Ferguson's results for the parallel and perpendicular needle axes since both orientations would be present in mulled samples. A comparison of the two sets of results indicates adequate agreement within *experimental* error.

DISCUSSION

There is no apparent correlation between the values of $10D_q$ and the measured or calculated heats of decomposition. For a particular toluidine complex, we found that ΔH_1 was lowest with $X = I$, and this may indicate a weaker M-N bond in the

TABLE III

iodides if the heats of sublimation are insensitive to the nature of the halogen. A similar generalisation may be made for AH_4 and AH_5 (Table III), although these energies also reflect changes in M-X bond strengths.

\boldsymbol{x}	L	ΔH_{\perp} (kJ mol ⁻¹)	$AH5 (kJ mol-1)$		
\mathbf{C}	o-Tol	194	777		
	m-Tol	212	799		
	p -Tol	219	802		
	An	203	786		
	o-CIA	183	766		
	m-CIA	212	795		
	p -ClA	218	801		
Br	o -Tol	211	779		
	m-Tol	195	763		
	An	218	786		
	o -CIA	212	780		
	m -CIA	223	791		
	p -CIA	212	780		
I	o-Tol	218	769		
	m-Tol	171	722		
	p -Tol	195	746		
	An	190	741		
	o-CIA	170	721		
	p -CIA	178	729		

HEATS OF REACTIONS (4) AND (5) FOR Co $L_2 X_2$

For a particular halogen, it was not possible to arrange the ligands into identical sequences of apparent M-N bond strengths. For this purpose, we have also calculated the ΔH_4 and ΔH_5 values for the aniline and the chloroaniline complexes of Co X₂ (the fluoroaniline complexes have not been included due to structural differences and the non-availability of data for $X = I$). AH_4 and AH_5 may be arranged into the following sequences:

$$
X = CI; p\text{-}To! \approx p\text{-}CIA \approx m\text{-}To! > m\text{-}CIA > An > o\text{-}To! > o\text{-}CIA
$$

$$
X = Br; m\text{-}ClA > An > p\text{-}ClA \approx o\text{-}ClA \approx o\text{-}Tol > m\text{-}Tol
$$

$$
X = I; \text{ } \sigma\text{-}Tol > p\text{-}Tol > An > p\text{-}CIA > m\text{-}Tol \approx \sigma\text{-}CIA
$$

The first sequence is similar to the sequence of base strengths for protonation². Exact agreement is not expected since small differences in sublimation enthalpies, or structural effects, may easily effect such a sequence. However, the complete lack of correlation when $X = Br$ or I leads us to suggest that the substituted anilines are class A (hard) donors¹ and the exchange of $X = CI$ for $X = Br$ or I increases the class B nature (softness) of the acceptor. This is not unexpected since nitrogen is not easily polarisable and the non-planar arrangement about the nitrogen atom does not permit $M-N$ π -bonding.

We were not able to observe any systematic dependence of Δt upon ΔH values. However, the Racah parameters¹¹ (B') were found to decrease in the order

$$
X = C I > B r > I.
$$

This may indicate greater covalency in the order $I > Br > Cl$ and this increase probably occurs mainly in the $M-X$ bond. This in turn will decrease the positive charge on the cobalt atom and weaken its electrophilic nature. If, as we have suggested, π -bonding is absent in these complexes then this weakened electrophilicity will tend to decrease the M-N bond strength.

REFERENCES

- 1 (a) G. BEECH, G. MARR, AND B. W. ROCKETT, J. Chem. Soc. (A), (1969) 629; (b) ibid., J. Chem. Soc. (A), (1970) 795.
- 2 L. MEITES, Handbook of Analytica! Chemistry, MCGRAW-HILL, New York (1963), p. 1.
- 3 J. S. AHUJA, D. H. BROWN, R. H. NUTTALL, AND D. W. A. SHARP, J. Inorg. Nucl. Chem., 27 (1965) 1625.
- 4 G. BEECH, S. J. ASHCROFT, AND C. T. MORTIMER, J. Chem. Soc. (A), (1967) 925.
- 5 J. R. WASSON, Chem. Analyst, 56 (1967) 26.
- 6 J. R. WASSON, K. K. GANGULI, AND L. THERIOT, J. Inorg. Nucl. Chem., 29 (1967) 2807.
- 7 L. BREWER, G. R. SOMAYAJULU, AND E. BRACKETT, Chem. Rer., 63 (1963) 111.
- 8 A. V. ABLOV AND TS. B. KONUNOVA, Russ. J. Inorg. Chem., 8 (1956) 582.
- 9 J. FERGUSON, J. Chem. Phys., 32 (1960) 528.
- 10 R. G. PEARSON, J. Amer. Chem. Soc., 85 (1963) 3533.
- 11 B. N. FIGGIS, An Introduction to Ligand Fields, Interscience, New York, 1966, p. 225.