Note

The deaquation and anation reactions of some anionoaquobis-(ethylenediamine)cobalt (III) complexes*

F. C. CHANG AND W. W. WENDLANDT

Thermochemistry Laboratory, Department of Chemistry, University of Houston, Houston, Texas 77004 (U. S. A.) (Received April 15th, 1970)

The thermal deaquation and anation reactions of several *cis*- and *trans*- $[Co(en)_2(H_2O)_2]X_3 \cdot nH_2O$, (X = Cl⁻, Br⁻, and NO₃⁻) complexes have previously been investigated by Chang and Wendlandt¹. It was found that the chloride complexes generally deaquated to give the *cis*- $[Co(en)_2Cl_2]Cl$ complexes while the bromide complexes either gave the *cis*-product or a mixture of *cis*- and *trans*- complexes. We wish to report here additional thermal deaquation studies of the *cis*- $[Co(en)_2XY]Y \cdot H_2O$ and *cis*- $[Co(en)_2(H_2O)X]Y_2 \cdot H_3O$ complexes, where X is Cl⁻ or Br⁻ and Y is Br⁻ or NO₃⁻.

EXPERIMENTAL

Preparation of compounds

The compounds, cis-[Co(en)₂(H₂O)Cl]Br₂·H₂O and cis-[Co(en)₂ClBr]Br₂·H₂O, were prepared as previously described by Vaughn and Lindholm². The cis-[Co(en)₂(H₂O)Br]Br₂·H₂O was prepared from cis-[Co(en)₂(H₂O)₂]Br₃·2H₂O by heating the latter at 40 °C with just enough water to give complete dissolution. After the solution turned to a violet color, the former complex was precipitated by the addition of solid sodium bromide. The dark violet colored crystals were filtered off, washed with small portion of 95% ethanol followed by diethyl ether, and then airdried at room temperature for 24 h. The complex, cis-[Co(en)₂(H₂O)Cl](NO₃)₂, was prepared by the reaction of cis-[Co(en)₂(H₂O)Cl]Cl₂ with silver nitrate, as previously described³.

Analysis of the complexes gave the following results: cis-[Co(en)₂(H₂O)Cl]Br₂·H₂O; Co, 14.36% theor., i4.8% found; H₂O, 8.78% theor., 8.6% found. cis-[Co(en)₂ClBr]Br·H₂O: Co, 15.02% theor., 15.4% found; H₂O, 4.59% theor., 4.1% found. cis-[Co(en)₂(H₂O)Br]Br₂·H₂O: Co, 12.96% theor., 12.9% found; H₂O, 7.92% theor., 7.9% found. cis-[Co(en)₂(H₂O)Cl](NO₃)₂: Co, 16.53% theor., 16.2% found; H₂O, 5.05% theor., 5.0% found.

^{*}Presented at the Recent Advances in Thermal Analysis Symposium, American Chemical Society Meeting, February 22-27, 1970, Houston, Texas, U. S. A.

Thermoanalytical techniques

The TG and DTA data were obtained using the apparatus and procedures previously described¹.

RESULTS AND DISCUSSION

The TG and DTA curves of the complexes are given in Fig. 1, while the procedural thermal stability ranges are given in Table I.

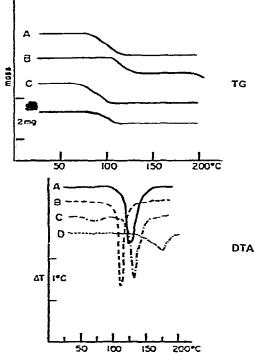


Fig. 1. TG and DTA curves of cobalt(111) complexes; (A) cis-[Co(en)₂(H₂O)Cl]Br₂·H₂O, (B) cis-[Co(en)₂(H₂O)Cl](NO₃)₂, (C) cis-[Co(en)₂(H₂O)Br]Br₂·H₂O, and (D) cis-[Co(en)₂ClBr]Br·H₂O.

TABLE I

PROCEDURAL THERMAL STABILITY TEMPERATURE RANGES OF COBALT(III) COMPLEXES

Complex	Reaction interval, $T_1 - T_5$ (°C)	Probable product(s)
cis-[Co(en) ₂ (H ₂ O)Ci]Br ₂ ·H ₂ O	75-125	cis- + trans-[Co(en) ₂ ClBr]Br
cis-[Co(en) ₂ (H ₂ O)Cl](NO ₃) ₂	105-130	cis- + trans-[Co(en) ₂ ClNO ₃]NO ₃
cis-[Co(ea) ₂ (H ₂ O)Br]Br ₂ ·H ₂ O	70-103	cis- + trans-[Co(en) ₂ Br ₂]Br
cis-[Co(en) ₂ ClBr]Br ·H ₂ O	80-112	cis-{Co(en) ₂ ClBr]Br

A single-step deaquation reaction was observed for all of the complexes. Hence, it was impossible to differentiate between the coordinated and the hydrate-bound water in those compounds containing both types of water molecules. The products,

NOTE

in all cases, were the dianionobis(ethylenediamine)cobalt(III) complexes, obtained according to the following reactions:

$$cis-[Co(en)_{2}(H_{2}O)X]Y_{2} \cdot H_{2}O(s) \rightarrow cis- + trans-[Co(en)_{2}XY]Y(s) + 2H_{2}O(g)$$

$$cis-[Co(en)_{2}(H_{2}O)X]Y_{2}(s) \rightarrow cis- + trans-[Co(en)_{2}XY]Y(s) + H_{2}O(g)$$

$$cis-[Co(en)_{2}XY]Y \cdot H_{2}O(s) \rightarrow cis-[Co(en)_{2}XY]Y(s) + H_{2}O(g)$$

For the cis-[Co(en)₂(H₂O)Cl]Br₂·H₂O complex, the formation of a mixture of cisand trans-[Co(en)₂ClBr]Br by thermal deaquation and anation has previously been reported as a synthetic method for the latter by Vaughn and Lindholm². Accordingly, the pale green colored mixture of cis- and trans-[Co(en)₂ClNO₃]NO₃ obtained by the thermal deaquation of cis-[Co(en)₂(H₂O)Cl](NO₃)₂ provided a convenient synthesis for the preparation of the former compound. No attempt was made to isolate the two individual isomers from the mixture.

All of the complexes deaquated in the 70-130 °C temperature range; the least stable thermally appeared to be the *cis*-[Co(en)₂(H₂O)Br]Br₂·H₂O complex, while the most stable was the *cis*-[Co(en)₂(H₂O)Cl](NO₃)₂ complex. The dissociation temperatures were in the same range as the *cis*-[Co(en)₂X₂]X·H₂O complexes previously reported¹.

The DTA curves of the complexes, as given in Fig. 1, all contained a single endothermic peak with a ΔT_{min} in the temperature range from 115–185°C. Because of the nature of the DTA sample holder, the procedural dissociation temperatures were somewhat higher in the DTA experiments than those obtained by TG measurements. Both *cis*-[Co(en)₂(H₂O)Cl]Br₂·H₂O and *cis*-[Co(en)₂(H₂O)Cl](NO₃)₂ had a single endothermic peak in their DTA curves, with ΔT_{min} values of 125 and 115°C, respectively. The curve for *cis*-[Co(en)₂ClBr]Br·H₂O also contained a single endothermic peak with a ΔT_{min} for the endothermic peak at 179°C which was similar to the ΔT_{min} values of 182 and 185°C previously reported¹ for *cis*-[Co(en)₂Cl₂]Cl·H₂O and *cis*-[Co(en)₂Br₂]Br·H₂O, respectively.

It was observed in several of the isothermal experiments that the change in configuration of the complexes, $cis \rightarrow trans$, for example, was influenced by the experimental conditions in the furnace chamber. Using lower temperatures (longer reaction time required) and low concentrations of water vapor, the *cis*-product was preferentially obtained. The product, cis-[Co(en)₂Br₂]Br, was obtained from *cis*-[Co(en)₂(H₂O)Br]Br₂·H₂O by deaquation in a desiccator over potassium hydroxide at 50 °C *in vacuo*.

ACKNOWLEDGMENT

The support of this work by the U. S. Air Force, Air Force Office of Scientific Research, through Grant No. 69-1620, is gratefully acknowledged,

REFERENCES

- 1 F. C. CHANG AND W. W. WENDLANDT, J. Inorg. Nucl. Chem., in press.
- 2 J. W. VAUGHN AND R. D. LINDHOLM, in S. Y. TYREE (Ed.), Inorganic Syntheses, Vol. IX, McGraw-Hill, New York, N. Y., 1967, p. 163.
- 3 L. J. BOUCHER, E. S. KYUNO, AND J. C. BAILAR, JR., J. Amer. Chem. Soc., 86 (1964) 3656.

Thermochim. Acta, 1 (1970) 495-497