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ABSTRACT

In experimental studies on the dynamic behaviour of continuous reaction
systems. there is an urgent need of reliable kinetic data on suitable exothermic model
reactions. This has caused a renewed interest in attempts to obtain such data from
careful analyses of temperature-time curves observed in adiabatic batch experiments.

The present communication deals with some theoretical and experimental
aspects of adiabatic reaction calorimetry and provides numerical solutions of the
temperature—concentration relation in non-adiabatic systems.

NOMENCLATURE

heat-transfer surface area

¢ concentration of key-reactant
Co initial concentration of kev-reactant
¢, average volumetric heat capacity

energy of activation

overall heat-transfer coefficient

reaction order

heat of reaction (positive for exothermic reactions)
gas constant

time

absolute temperature of reacting mixture

initial temperature of reacting mixture
activation-energy temperature, Eqn. (1)

ambient temperature

inflection-point temperature, Eqn. (7)

maximum adiabatic reaction temperature, Eqn. (4b)
maximum non-adiabatic reaction temperature
reaction rate

x reactant conversion, Eqn. (12a)

¥y dimensionless reaction temperature, Ean. (12a)

Z frequency factor, Eqn. (1)
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Z, modified frequency factor, Eqn. (5b)
¢ dimensionless temperature variable, Eqn. (6b)
0, dimensionless temperature parameter. Egn. (6b)

T dimensionless time. Eqn. (6b)
@ dimensionless heat-transfer parameter. Eqn. (12b)
INTRODUCTION

For the purpose of investigating the thermal stability of continuous stirred
reaction systems. we scanned the available literature in search of convenient exo-
thermic model reactions for conducting liquid-phase perturbation experiments.
Because of practical limitations inherent in the latter experiments, such model
reactions should satisfy rather restrictive requirements with regard to the heat of
reaction, the energy and entropy of activation and the solubility of the reactants.
Moreover, within the range of conditions applied in the perturbation experiments. the
expression for the reaction rate should preferably be of the type

Ule, TYy=2Z " exp(—T,/T)  with T,=ER (1)

Apart from the fact that very few rcactions seem to cope with the particular
combination of properties required for the perturbation experiments. we were also
faced with the problem of evaluating the Kinetic constants n (reaction order), 7,
(activation-energy temperature) and Z (frequency factor) of promising mcdel reactions
at moderate reactant concenirations. The conventional method of determining these
parameters Is based on concentration-time measurements in isothermal batch
systems at various temperature levels. However. with strongly exothermic reactions
involving appreciable reactant concentrations. it is virtually impossible to keep the
temperature of the reacting mixture sufficiently constant. We therefore considered the
feasibility of conducting kinetic measurements in adiabatic batch systems (Gordon'-?).

ADIABATIC REACTION CALORIMETRY

In perfecily adiabatic batch systems. the variation of reactant concentration ¢
and reaction temperature T with time ¢ is represented by the equations

E= -U and c,,-g= ouU (2)
dt d:

Hence,
daT o
ek 3)
dc c ¢

P

Assuming Q/c, to be constant (i.e. independent of temperature and composition).
the integration of Egn. 3 leads to the simple linear relation

T= Tm—Q—-c or c=

Cp

(T.—T) (4a)
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satisfying the initial and final conditions
I = O - Cc = CO - T = To

(4b)

Eliminating the reactant concentration. we obtain the following expression for the
rate of temperature change in adiabatic batch systems:
dT

E— =ZAT,.— T expt—T,/T) (3a)
t

n— 1 . Tqn-—1
Z. =Z [52] =Z [—‘—"—J (5b)
Q Tm—TO

The differential Eqn. (5a) can be integrated in terms of tabulated exponential
integrals (Abramowitz and Stegun®). For example. in the case of a second-order
reaction (1 = 2). one finds

with

} X
T = [Ei(ﬂo)—Ei(_())] - [exp“") - e"pw’] (61)
where
= —Z2Im! =L _ 1 Uo=£"'£‘ (6b)
T, T - T, T,

A typical temperature—-time plot calculated from Eqgn. (6a)is shown in Fig. I,
corresponding to the parameter values 7, = 10 500 °K, 7, =300 K and 7, =350 K:
with rising reaction temperature. the dimensionless temperature variable 0 then drops
from 8, =35 to zero. Sigmoid temperature-time curves of this type are frequently
observed in adiabatic reaction calorimetry.

The location of the inflection-point temperature 7; in Fig. 1 follows from the
relation

S =n

T-

for n>0 (7)

derived by differentiating Eqn. Sa with respect to ¢ or 7. Since the reaction tempera-
ture is restricted to the temperature range 7, < T < T_,, no inflection point is observed
if T; would be lower than T,. The condition for obtaining a truly sigmoid tempera-
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ture—time curve therefore i1s
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Fig. 1. Typical temperature-time curve in adiabatic reaction calorimetry, calculated from Eqn.
6a with 8, =35 (corresponding temperatures: 7,=10 500 K, T,=300"K and 7,=350K).

If the condition in Eqgn. (8) 1s satisfied, Eqn. (7) may be used to calculate T, /n
directly from observed values of 7, and 7;. The inflection-point temperature can be
determined fairly accurately from the maximum of a plot of d7/dt rersus T; an
example of this type of graph is shown in Fig. 2 (based on the parameter values used
in Fig. 1). Such graphs are most readily obtained through continuous differentiation
of the experimental temperature signal by means of appropriate electronic devices
and subsequent recording of the derivative as a function of the corresponding reaction
temperature.

In practice, the integrated temperature-time relation Egn. (6) is of little use for
deriving Kinetic constants 7, and Z_ from experimental 7, r or d7T;dr, T curves. For
the latter purpose. the differential Eqn. (5a) is transformed into

In [_1__(2‘] =InZ, — L (9a)
(T,—T) dit T

or, for sufficiently small time intervals,

In [—l_ﬂ —mz,-L& ob)
(T,—T)Y 4t T

with
dt=t,—t, AT=T. - T, T=4Tis,+T) (9¢)
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Fig. 2. The rate of temperature change as a function of temperature in adiabatic reaction calorimetry.
calculated from Eqn. (53) with n=2, 7,=10 500°K and 7,=350 K.

According to these expressions, a plot of the left-hand side of Eqn. (9a) or (Gb)
rersus the reciprocal (average) reaction temperature should vield a straight line, from
which 7, and Z, can be derived by suitable regression methods. This procedure
largely depends on the availability of reliable values for the reaction order n (which
should be constant throughout the temperature and concentration range involved)
and for the maximum adiabatic reaction temperature 7, (which can usually be
estimated quite accurately from the experimental 7. ¢ curve).

Starting from the 7. r curve. the quantities defined in Eqn. (9c) are calculated
from a series of successive temperature readings at a number of narrowly spaced
times 7,, r,, r5, .... Substitution of these values into Eqn. (9b) then gives the linear
relation from which 7, and Z, can be derived. If a d7/ds, T plot is available, this
curve can be used directly in combination with Eqn. (92) for calculating 7, and Z,,.
The uncertainty inherent in evaluating the slope of the 7, ¢ curve from finite A7 and
At values then does not arise.

An example of the results obtained with the former method (cviz. analysis of the
7, t curve) is shown in Fig. 3, which is based on measurements conducted in a simple
Dewar calorimeter of the tvpe used by Pritchard and Skinner* (see also Skinner,
Sturtevant and Sunner®). The reaction under consideration is one of the model
reactions selected for our perturbation experiments, viz. the homogeneous first-order
decomposition of hydrogen peroxide in acid soludion catalvzed by ferric ions
(Baxendale®). Both this method and the development of a sufficiently stable dif-
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ferentiating circuit for obtaining smooth d7.dr. T curves are subject to further
investigation at our laboratory
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Fig. 3. Modificd Arrhenius plot derived from an adiabatic temperature—time curve for the first-order

decompusition of hydrogen peroxide (the kinetic constants calculated from the lincar relationschip
arc 7,=11 640 K and 2, =2Z=1.69 < 10" *scc™ ).

NON—ADIABATIC REACTION CALORIMETRY

The nicthods outlined in the preceding section are based on the assumption.
that the reaction system closely approaches adiabatic behaviour. In order to establish
the effect of deviations from adiabaticity due to heat exchange with the surroundings.
we did some numerical calculations on reaction systems satisfving the equations

Ejji = ~U and cp-g: QU ~hAHT—-T))

dr dr (10)
with reaction rate U given by Eqn. (1). Eqns. (10) correspond to systems in which the
reaction vessel is completely immersed in a medium of constant temperature 7_:
quantity /1 represents the overall heat-transfer coefficient between the reacting mixture
and the surrounding medium and A is the specific heat-exchanging surface area.

From Egns. (10) and (1). the relation between the rcaction temperature and the
reactant concentration is found to be

dT Q0  hA(T-—T.) 0 hA(T-T)) ( T,‘)
= X2 el o =+ —— % exp|{— (1)
de <, o, U <, Zc, " .

Introducing the dimensicnless variables

x=1-= and o= ST (12a)

Co
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and the dimensionless parameters

o= el ‘,,,=___’if‘__l (12b)
QCO QCO zZ Cp C'(;
Eqn. (11) changes into
dy y—¥ ( v )
dx ¢ (1—-x) P .V
For adiabatic systems (¢ = 0) this equation reduces to
dy
— =1 and. hence, V= Yoi+X = ¥,—(1—x) (14a)
dx
where
'y T, ) i
Yo = % "o and Yo = o m yo+1 (14b)
QOcy Ocyp

At constant 1,. the y. x curves of all adiabatic reaction systems. in accordance with
Eqgns. (3) and (4). thus are represented by a single straight line with slope unity. which
startsat (x =0, y=3y)andendsin(x=1.y =3, ,=yo+1).

Considering reaction systems. which are neither adiabatic nor isothermal
(0 < ¢ < =), the y. x curves again start at (x = 0. y = 1;,). but must eventually end in
(x=1.y=y). For a given value of »,. the shape of these curves depends on the
magnitude of ¢ (i.e. on the degree of non-adiabaticity) and on the value of y_
(dimensionless ambient temperature) relative to v, (dimensioniess initial temperature).

If v < v, (and, hence. T, < T, : cooled reaction vessel). the v. x curve is com-
pletely confined to the region below the adiabatic line 3 = 33 +x. On the other hand.
with y_> 3, (and hence, 7. > T, : heated reaction vessel). the y. x curve is entirely
restricted to the region above the adiabatic line. In the intermediate case
Yo <J). <o+ (and, hence. Ty < T_ < T_) the initial slope

(95> =1-00(e—1.) exp(& (15)
d.\' t=0

Vo

is greater than unity and the 1. x curve thus starts steeper than the adiabatic line.
However, since v, < y,,. the y. x curve must end below the adiabatic line and, there-
fore. will intersect with the latter line. The location of this intersection point and the
maximum of the y, x curve of course depend on the magnitude of . and ¢.

For non-adiabatic and non-isothermal systems, no analytical solution of the
differential Eqn. (13) can te given. In this case, the precise shape of the y, x curve hasto
be established by numerical integration. Some of the results obtained with an ALGOL
integration programme using a modified Runge-Kutta procedure (Zonneveld?) are
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presented in Figs. 4 and 5. These graphs are based on the parameter values 3, = 300
and yo,=10 (and. consequently. y,,=1,+ 1= 11). which are supposed to be re-
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Fig. 4. Noa-adiabatic temperature—concentration curves from computier solutions of Eqn. (17! for
7=2, 3, =300, vo=10.0, 3.=10.5 and the following values of heat-transfer parameter ¢: 0(1), 15 -**
(2), 10733 (3),3x 10712 (4), 10° 72 (3), 310~ 1= (6).
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Fig. 5. Noa-adiabatic temperature-concentration curves from computer soluiions of Eqgn. (13) for
n=2, y,= 1300, 3o=10.0, =10~ !2 and the following valucs of the dimecnsionless smbient tempera-
ture, y.2 9.5 (1), 10.0 (2), 10.5 (3), 11.0 (), 11.5 (5).
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presentative for another model reaction in our perturbation experiments. viz. the
oxidation of thiosulphate by hydrogen peroxide (Abel®).

TABLE |

COMPARISON OF CALCULATED AND ASSUMED X ;4 VALUES

Xmid
Yo=lc Vm Nmax Xemax Vmia
Calc. Ass.
9.6 10.6 10.2569 0.8180 9.9284 0.3467 0.409C
9.8 10.8 10.5455 0.8701 10.1727 0.3850 0.4350
10.0 11.0 10.8089 0.9043 10.4044 0.4123 0.4522
10.2 11.2 11.0543 0.9277 10.6272 0.4322 0.4638
10.4 1.4 11.2874 0.9444 10.8437 0.4468 0.4722

Recently. this reaction has been emploved by several investigators (Cohen
et al®, Keairns and Manning'®, Root and Schmitz'') in connection with experii:ental
studies on the properties of various types of continuous reaction systems. Cohen and
Spencer® also reported values for the activation energy and frequency factor derived
from non-adiabatic measurements (see also Griegel'?). In analyzing their temperature—
time curves obtained with reaction mixtures of constant initial reactant concentration
and varying initial reaction temperature, the authors assumed that all reaction
mixtures considered would have the same reactant concentration c,,;4 at temperature
T_,;a half-way between the initial and maximum reaction temperature (7 and 7T, ..
respectively).

Clearly, the latter assumption is based on the applicability of Eqn. (4a) or (14a).
which only holds for perfectly adiabatic systems. In order to test its utility for non-
adiabatic conditions. we calculated values of x_;4 corresponding to dimensionless
temperatures

= ()0 + ¥mas) (16)

VYmid

B

for a number of cases with », =300. ¢ = 107 '* and various values of 1o =1.. The
results are shown in Table I. which also contains x,,;4 values from Cohen and Spencer’s
assumption. riz.

(xmid);cs. =1 Xmax (17)

where conversion x___ccrresponds to dimensionless temperature v

max

max (€€ also Fig. 6).
For perfectly adiabatic systems (¢ = 0) both x,_;,; values should of course be equal to
0.5 for all values of y,. In non-adiabatic systems. however. the quantities ;4 and
Xnia have no particuiar significance: moreover. the x_ ;4 values obtained with Cohen
and Spencer’s assumption deviate quite considerably from the correct values d¢ rived
from computer seolutions of Eqn. (13). One might therefore be inclined to question the
rehiability of kinetic constants calculated on the basis of this assumption.
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Fig. 6. Comparison of x;s valucs calculated from computer solutions of Egn. 13 with x4 values
based on Cohen and Spencer’s assumption (see also Table D.
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