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Note 

On the appIicability of the p(x)-function to the determination of 

reaction kinetics under non-isothermal conditions 

lirrfitute of Solid Stare PJrysic_- of rJze CzecJr Academy of Sciences in Prague [CzecJtoslorakiaj 

(Received April 13tI-1, 1971) 

Recent iiterature2-J-8-’ ’ indicates a xvide use of the function p(x). This has 

been introduced for non-iso*_hermal kinetic studies by Akahira’ and popularised by 

Doyle’ and Satava3. The function p(x) is obtained by integration of the temperature 

dependent specific rate constant within a temperature interval from 0 to T and is 

defined as ‘-w* 

(1) 

in order to tid a suitable analyticai formulation of p(v) it is necessary to depIoy the 
nx --z 

function of the exponential-integral E,(x) = - 
J 

?- dx. This function, originally 
X X 

used for studying thermal detoriation of insuiatin, u materials and thermionic emis- 
sion’, can be derived as folIowsJ: As the convergent series according to Taylor’s 

formuIa’g 

E,(x) = 0_577216...+In x4-x t -?? - 
L(-l)nXG 

3--J! --- ’ n-n! 

and/or as the semi-divergent series through integration by partsI 

E,(.r)=e-’ 1 -:,z- ___ + 
(- l)“n! 

X x X2 x” > 

(2) 

The factoriaLfunction here increases more steepIy for high vaIues of n than the 

exponent-function_ Though less suitable, the last series of Eqn. (3) is frequently used 

in kinetic evaluations’-4 as it is most convenient for further mathematical combination 
with Eqn. (1) yielding P(X) in the form of the foiiowing series: 

p(x)Ts 
( 
1_2!+3!_ ___ +(-l)“(n+l)! 

X 2 _f > 
(4) 

The different types of integration under non-isothermal conditions have been 

discussed by &stik4_ Thus using the reverse substitution (l/x) in the integration in 
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Eqn. (i) and soiving EC(x) according to SchShniIch’* 

E,(+-e-Z ( 1 _A+ 1 (- lh 
x x+1 (x-i-1)(x+2) - --- + (X+l)...(X+n) > 

sv= P(X) as 

e 
-Z 

p(x) = l- 
1 1 

-+ - ___ 
+ (-l)““a, 

x(x+ 1) x+2 (x-i-2)(x+-3) (x+2) . ..(_x+n) > 
(6) 

(where a, is the constant”) used first by Van Krevelen et a1.l’ and recently by 

0zawai2. The tabulation of E,(x) is presented in the tables of Akahira’ (e-“/-r, 

Q(x), .X = 20 (0.01) SO), Harris’ (X = 1(1)4(0.4)8(1)50), Miller and Hurst6 (X = 

0_2~00.5)5(0.i)~0(0.2j20(0.5)~(~)soj and p(x) in the work of Doyle 2*4 (-log p(x), 
x = 10(1)50), OberiZnder’ (kT/E exp(- E/kT), k/E jzexp(- E,/kTj dT etc., E = 
0.2(0.2j2, T= 25(25)1000,150(10)390), Zsako’ (-log p(E/RT), T= 273(10)600, 

E = 10(2)66) and Satava and skv&ra’ (-iog p(E/RT), p(E/RT), T= 273(1)1773, 

E=5(1)1OO, programme in ALGOL available on request). The behaviour of p(x) when 

using different types of approximations was investigated by DoyIe”, and a limited 

range formula was introduced’ I and later used by Ozawa12 and particularly 

developed by MaeCallum and Tanner’ 3 

iog p(x) = -2,315-00.4567x (Ref. 11) 

= -00.4825 AE0-4351 -(0.449+0.217 AE)/TlO-' (Ref. 13) (7) 

where AE is the activation energy (in kcal) and T the temperature (“K). 

It has been suggested’ that P(X) is a linear function of x in a narrow temperature 

interval making possible the introduction of a new simple method for the estimation 

of a probable reaction path from a single non-isotherm’ 3-i4. A simple plot of In g(z) 

L’S_ i/T gives a straight line for the most suitabie reaction mechanismi4, being 

represented by function g(z)” for an experimentalIy determined degree of con- 

version CL (fraction reacted). This procedure is possible owing to the constant difference 

between the functions In g(a) and In P(X), approximated as two parallel straight 

lines 13B14.16. However, the validity of this linear behaviour of In P(X) has not been 

properly anaIysed and is as yet limited in the mathematical sense. 

From the logarithmic form of Eqn. (4) it can be seen that In p(x) is pre- 

dominantly dependent upon x whiie the effect of the series is suppressed by the 

logarithm. This, is similar to neghzcting In Z- with respect to E/RT in the logarithmic 

expression of the specific rate cons’iant. In order to establish the range of the 

validity of the linear approximation the well-known Taylor expansion can be put to 

use: 

ln P(X) = In P(X) 
I 

+ dbp(x) 

I 

d2 In p(x) 

Xl dx x: 
(X---XII + 

I 2d_x2 zx 
(x-xI)2 -I- .*. (9 
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where ...I is the chosen point of the approximation. Neglecting terms of the exponent 
above two in Eqn. (8), after substitution 

in p(x) = In p(~l)tp(-u,)(~-xl)~~~(~,)(.~-.rc,)t 0) 

where (see Appendix) 

p(xI) = -(eX’x:p(x,))-’ (10) 

5(X1) = -@(~~))‘)-(~I$_2)p(%r)~~ ill) 

In practice the graphical comparison of the linear with the parabolic substitution 
(in Eqn. (9)) gives evidence for the vahdity range of the Iinear approsimation. The 

folIowing table provides data of p(x), ti, El(x) and -log P(X). 

.r 10 20 30 40 50 

--In p(x) 14.7 26.1 36.8 47.4 57.5 

-P(x) 1.187 1.102 1.064 1.049 1.032 

--I! 5(x) 0.123 0.065 0.033 0.025 0.013 

The most unfavorab!e case, .xX = 10, is illustrated diagramatically in Fig. 1 with 

regard to (x-x3 in Eqn. (9). It is easily seen that the parabolic term has a negligible 

infhrence for (x-13 below about one, which means that for a normal temperature 

interval within about 1OOT the straight line is really an excellent approximation. 

I E=:G!JCO.T=5U~.AT=~62 

From the slope of the linear approximation of p(x) the va;iabIe x may be 

calculated. in the case of a kinetic investigation the vahre of the activation energy E 

in x = E/RT(where R is the gas constant 1.987) can easily be derived mathematically. 

There appear to be several ways of determining this slope. As p(x) in the tabIe has an 
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almost constant value of about 1.08, the semiempirical approximations introduced 

in the form of Eqn. (7) are justified. Thus after the derivation of Eqn. (7) with respect 

to l/T and rearrangement: 

E = _ 449+ tg p/2.303 

217 
IO3 ~cal/mol] (12) 

the activation energy can be calculated from the slope tg ,!? of the straight line approxi- 

mation of the plot of In g(z) w. l/T. Another method used by Satavals employs the 

first two terms of the series in Eqll. (.419) and expresses E as the root of the derived 
quadratic equation: 

E = y(-tga + Jtg2/3+S tg/3 T)[cal/mol] 

This second, more complicated method, seems to be a more appropriatz approxima- 

tion because it takes into consideration the position of the line in the temperature 

scale (rzV,,_)_ Through the check-evaluation made on the theoreticaily calculated and 

plotted thermogravimetric cume * ' (E = 27,000 and g(z) = -In (1 -z)) as scanned 

from z = 0.05 by steps of 0.05 to 0.95 yielding log g(z) cs. T- ’ 10e3 as follows: 

- 1.23/2.610, - 0.977/2.559, - 0.789/2.53, - 0.65 l/2-5 I, - 0.54Ij2.493, - 0.448/2.478, 

- 0.366/2.466, - 0.292;2.455, - 0.223/2.443, -0.159/2.433, - 0.098/2.423, -O-038/ 
2.414, 0.021/2.405, 0.081,‘2.396, 0.142/2.357, O-207/2-375, 0.278/2.363, 0.362/2.351, 

0.47712.335; Eqn. (12) gives E= 27,7001,1,100 and Eqn. (13) E = 31,000~600. Both 

values compare well with the values of E obtained by conventional methods”. 

Equation (13) yields a little higher value of E (but with a lower error) probabIy due to 

neglecting terms with exponents langer than two in the series of Eqn. (A29). It may be 

corrected by introducing a suitable constant or by iterations through Eqn. (A15) 

and/or Eqn. (A19j. 
This method describedx3*‘j for the handy evaluation of the reaction mech- 

anism” as well as for the determination of associated kinetic parameters from a 

singe non-isothermal run is believed to be well founded and, because of its simplicity, 

may become a basic method in regular kinetic investigations’ 6. 

APPESDIX 

On considering Eqns. (I), (3) and [4) 

d a e-I 

ds z s 

cIj e-I -ddx=d 
..?’ s 

-cl-+-_ 
dx o x6 dx 

d In P(X) = _ 1 1 = _ 

dx eXx2 p (x) x(f --x e*E,(x)) 

W4) 

(A151 
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d" In p(x) = ~(xM+2/x)+dp(xWx 

dx’ eXx'(p(x))2 

dp(x) _ 2! 

CL. 
-p(x)+T 

_x 
__~~____+(-lr(n+1)!)]=_~ 

x x= x 

dInp(x)=_ (-I)"(ntl)! --i = R 

dx x" 
EtgP 
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