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Note

On the applicability of the p(x)-function to the determination of
reaction kinetics under non-isothermal conditions
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Recent literature®>~*-8-17 indicates a wide use of the function p(x). This has
been introduced for non-isothermal kinetic studies by Akahira! and popularised by
Doyle” and Satava’. The function p(x) is obtained by integration of the tempsrature
dependent specific raie constant within a temperature interval from 0 to 7 and is
defined as 2—-2°

— dx 1)

In order to find 2 suitable analytical formulation of p(x) it is necessary to deploy the

T X
function of the exponential-integral E;(x) = — J € _ dx. This function, originally

x X

used for studying thermal detoriation of insulating materials and thermicnic emis-
sion!, can be derived as follows*: As the convergent series according to Taylor’s
formula'®

2 n_n
E,(x) = 0.577216...+In x*—x + —~— — . 4 X @
2-2! n-n!
and/or as the semi-divergent series through integration by parts®®
-= i 2t —1)'n!
Ei)=5— (1—-+—,—...+(—A) ©)
x x x° x"

The factorial-function here increases more steeply for high values of n than the
exponent-function. Though less suitable, the last series of Eqn. (3) is frequently used
in Kinetic evaluations®~# as it is most convenient for further mathematical combination
with Eqn. (1) yielding p(x) in the form of the following series:

p(x)=5;(1__2_’+.3_!_,,,+%ﬂ)_!) ©

5
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The different types of integration under non-isothermal conditions have been
discussed by Sestak®. Thus using the reverse substitution (1/x) in the integration in
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Eqn. (1) and solving E;(x) according to Scholmilch!®

E, (%) = e~ (1 1 + 1 s (—1D’a, ) )
x x+1 (x+1){x+2) (x+1)...(x+n)
gives p(x) as
e’ 1 1 B (—1)"*ig, ) .
p(x)—x(x+1) (l x+2  (x+2)(x+3) +(x+2)..-(x+n) ©

(where g, is the constant'®) used first by Van Krevelen et al.?” and recently by
Ozawa'?. The tabulation of E,(x) is presented in the tables of Akahira® (e */x,
E;(x), x=20 (0.01) 50), Harris> (x = 1(1)4(0.4)8(1)50), Miller and Hurst® (x =
0.2(0.5)5(0.1)10(0.2)20(0.5)50(1)80) and p(x) in the work of Doyle >* (—log p(x),
x = 10(1)50), Oberlander’ (kZ/E exp(—E/kT), k/E jgexp(—E/kT) dT etc., E=
0.2(0.2)2, T =25(25)1000,150(10)390), Zsako® (—log p(E/RT), T =273(10)600,
E =10(2)66) and Satava and Skvara® (—log p(E/RT), p(E/RT), T=273(1)1773,
E=5(1)100, programme in ALGOL available on request). The behaviour of p(x) when
using different types of approximations was investigated by Doyle!°, and a limited
range formula was introduced'' and later used by Ozawa'? and particularly
developed by MacCallum and Tanner!3

log p(x) = —2,315-0.4567x (Ref. 11)
= —0.4828 AE®*3°! _(0.449+0.217 4E)/T107 3 (Ref. 13) )

where AE is the activation energy (in kcal) and 7 the temperature (°K).

It has been suggested® that p(x) is a linear function of x in a narrow temperature
interval making possible the introduction of a new simple method for the estimation
of a probable reaction path from a single non-isotherm*-*#, A simple plot of In g(z)
ts. 1/T gives a straight line for the most suitable reaction mechanism®?, being
represented by function g(x)?' for an experimentally determined degree of con-
version « (fraction reacted). This procedure is possible owing to the constant difference
between the functions In g(x) and In p(x), approximated as two parallel straight
lines'3-%-16 However, the validity of this linear behaviour of In p(x) has not been
properly analysed and is as yet limited in the mathematical sense.

From the logarithmic form of Eqn. (4) it can be seen that In p(x) is pre-
dominantly dependent upon x while the effect of the series is suppressed by the
logarithm. This, is similar to neglecting In 7 with respect to £/RT in the logarithmic
expression of the specific rate constant. In order to establish the range of the
validity of the linear approximation the well-known Taylor expansion can be put to
use:

d In p(x)

P Co—xy) + d*In p(x)

2| G @)
xg X3

In p(x) =In p(x) L +
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where x; is the chosen point of the approximation. Neglecting terms of the exponent
above two in Eqn. (8), after substituticn

In px) = In p(x,) +p(x)(x—x) +3E(x;) (x—x,)? ©)
vihere (sec Appendix)

plx) = —(e"xip(x))~’ (10)

E(x)) = —(P(x)*—(x1 +2) p(xy)/x (1)

In practice the graphical comparison of the linear with the parabolic substitution
(in Eqn. (9)) gives evidence for the validity range of the linear approximation. The
following table provides data of p(x), €%, E,(x) and —log p(x).

x 10 20 30 40 50
~Inp(x) 147  26.1 368 474 515
—p(%) 1.187 1102 1.064 1.049 1.032

—3 &) 0.123 0065 0033 0.025 0013

The most unfavorable case, x; = 10, is illustrated diagramatically in Fig. 1 with
regard to (x—x;) in Eqn. (9). It is easily seen that the parabolic term has a negligible
influence for (x —x,) below about one, which means that for a normal temperature
interval within about 100°C the straight line is really an excellent approximation.

tnp(x)

-7 - 2
lep(x)}=~147-1187(x-x, }-0.12(x~x.)

Inp(x}frem tatles
tnp(x}=-34.7-1187 (x-x,)

-6}

5% devicticn for x,= 10eg
E=2300C0.T=1500,4T=*i60
E=20C00. T=150C, aT=2107
£=10000.T=500.4T=262

-15

lnp(x,)=-147

'
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From the slope of the linear approximation of p(x) the variable x may be
calculated. In the case of a kinetic investigation the value of the activation energy E
in x = Ef/RT (where R is the gas constant 1.987) can easily be derived mathematically.
There appear to be several ways of determining this slope. As p(x) in the table has an
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almost constant value of about 1.08, the semiempirical approximations introduced
in the form of Eqn. (7) are justified. Thus after the derivation of Eqn. (7) with respect
to 1/T and rearrangement:

449 +tg §/2.303
217

E=— 103 [cal/moi] (12)

the activation energy can be calculated from the slope tg § of the straight line approxi-
mation of the plot of In g(x) vs. 1/7T. Another method used by Satava'® employs the

first two terms of the series in Eqn. (A19) and expresses E as the root of the derived
quadratic equation:

LA ALN0 LgRafiaVil.

E= I987( tg B + /te?f+8 tg f T) [cal/mol] (13)

This second, more complicated method, seems to be a more appropriatz approxima-
tion because it takes into consideration the position of the line in the temperature
scale (T....)- Through the check-evaluation made on the theoreticaily calculated and
plotted thermogravimetric curve'’ (E=27,000 and g(x) = —In (1 —%)) as scanned
from x = 0.05 by steps of 0.05 to 0.95 vielding log g(x) vs. 7~ ' 10~ 2 as follows:
—1.23/2.610, —0.977/2.559, —0.789/2.53, —0.651/2.51, —0.541/2.493, —0.448/2.478,
—0.366/2.466, —0.292/2.455, —0.223/2.443, —0.159/2.433, —0.098/2.423, —0.038/
2.414, 0.021/2.405, 0.081/2.396, 0.142/2.387, 0.207/2.375, 0.278/2.363, 0.362/2.351,
0.477/2.335; Eqn. (12) gives E= 27,700+ 1,100 and Eqn. (13) E = 31,000+ 600. Both
values compare well with the values of E obtained by conventional methods'?
Equation (13) yields a little higher value of E (but with a lower error) probably due to
neglecting terms with exponents langer than two in the series of Eqn. (A19). It may be
corrected by introducing a suitable constant or by iterations through Eqn. (Al5)
and/or Eqn. (A19).

This method described??:'* for the handy evaluation of the reaction mech-
anism?! as well as for the determination of associated kinetic parameters from a
single non-isothermal run is believed to be well founded and, because of its simplicity,
may become a basic method in regular kinetic investigations!'®

APPENDIX

On considering Eqns. (1), (3) and (4)

d (e = d (®e = d [*e = e~

— —dx = — -_— — | —@édx = - — Al4

dx xP dx Jo x° dx Jo x° x® ) ( )

dlnp(x) _ _ S 1 (A15)
dx e x“p(x) x(1—xe*E;(x))
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d’In p(x) _ p(x)( +2/x)+dp(x)/dx

dx? e*x*(p(x))* (10
dp(x) _ [_p(x) N g;_‘ (_ 2t 3_; 4 M)] - % (@A
dx 3 X x x" x~
2 2
dlnpx) _ _< 1 ) g 1+2/x (A18)
dx? e*x " p(x) e*x"p(x)
dlnp(x)z_(1_£_:_i!_ (‘1)"('1-¥-1)!)'i _R
— B ey Etgﬁ (A19)
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