Note

Thermodynamic functions for perfluorotoluene

G. F. KENNEDY*, HANA ALEMAN AND J. LIELMEZS

Chemical Engineering Department, The University of British Columbia, Vancouver 8 (Canada) (Received September 28th, 1970)

The availability of molecular structural and spectroscopic data¹ has made it possible to estimate the thermodynamic functions, C_p^0 , S^0 , $(H^0 - H_0^0)/T$, $-(F^0 - H_0^0)/T$, for the perfluorotoluene in the ideal gas state at 1 atm pressure. Table I presents the thermodynamic functions obtained by means of statistical mechanical calculations using the harmonic oscillator approximation, while at the same time the internal rotational contribution is treated by means of the Pitzer-Gwinn method⁴. The results presented in Table I are fitted to Eqn. 1:

$$\Lambda = a + bT + cT^2$$

(I)

TABLE I

THERMODYNAMIC FUNCTIONS FOR PERFLUOROTOLUENE

Temp.	C_p^0	$(H^{o} - H^{o}_{0})T$	$-(F^{0}-H_{0}^{0})^{T}$	S°	
(° <i>K</i>)	$(cal \cdot mole^{-1} \cdot K^{-1})$	$(cal \cdot mole^{-1} \cdot K^{-1})$	$(cai \cdot mole^{-1} \cdot K^{-1})$	(e.u.)	
273.15	44.13	26.28	78.62	104.90	
298.15	46.54	27.88	80.99	108.87	
350	51.08	30.99	85.71	116.70	
377.15	53.23	32.51	88.08	120.59	
400	54.92	33.78	89.99	123.77	
450	58.30	36.29	94.15	130.44	
500	61.24	38.64	98.10	136.74	
550	63.81	40.82	101.88	142.70	
600	66.03	42.83	105.52	148.35	
65 0	67.96	44.69	109.02	153.71	
700 ·	69.64	46.41	112.40	158.81	
750	71.09	48.01	115.66	163.67	
800	72.37	49.50	118.80	168.30	
850	73.48	50.88	121.84	172.72	
900	74.45	52.15	124.79	176.94	
950	75.31	53.35	127.64	180.99	
1000	76.07	54.47	130.41	184.88	

where Λ is the thermodynamic function in question and T is the temperature (°K). The constants a, b, c (Eqn. 1) were evaluated using common least square curve

*Department of Agricultural Engineering, The University of British Columbia.

274

NOTE

fitting methods⁵ and are given in Table II. The use of the temperature dependent Eqn. 1 may cause deviations in the calculated thermodynamic function values (Table II) from those shown in Table I. The values of the molecular parameters used in the calculation of thermodynamic functions (Table I) are given in Table III.

TABLE II

CALCULATED CONSTANTS FOR PERFLUOROTOLUENE (EQUATION 1)

Function	а	b×10²	c × 10 5	Standard ^a deviation (cal·mole ⁻¹ · K^{-1})
C_{r}^{0}	18.129	11.34	- 5.616	<u></u> 0.471
$C_p^0 = H_0^0)/T$	8.213	7.51	-2.910	÷0.164
$-(F^{\circ}-H_{0}^{\circ})/T$	52.138	10.52	-2.717	÷0.134
So	60.351	18.03	- 5.628	± 0.297

Standard deviation of residuals, S

$$S = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - m - 1}}$$

where n is the number of observations, m is the number of independent variables, y_i is the *i*th observed value of Y (Table I), and \hat{y}_i is the *i*th predicted value of Y (Eqn. 1).

Although there are no available experimental data, the overall reliability of the frequency assignments¹, even if they were mostly made for the liquid state, suggests that the error should be within the limits of the experimental accuracy.

TABLE III

MOLECULAR PARAMETERS FOR PERFLUOROTOLUENE

Thermochim. Acta, 2 (1971) 274-276

Frequencies in wave numbers $v (cm^{-1})^a$										
1657	1657	1525	1510	1434	1350	1237	1237			
1192	1154	1154	1090	994	875	744	714			
694	667	609	584	548	498	462	442			
382	364	342	306	305	300 ^b	282	276			
200	200	174	167	88	85					
Moment of inertia product ^e Molecular shape facto i ⁴				$I_{ABC} = 4,459,251 \times 10^{-117} \text{ g}^3 \cdot \text{cm}^6$ $\sigma = 6$						
Molecular weight				M = 236.07						
Reduced moment of inertia ^e				$I_{\rm red} = 114.15 \times 10^{-40} {\rm g} \cdot {\rm cm}^{-2}$						
Internal rotational barrier ^f Physical constants ^e				V = 13.0 cal-mole ⁻¹						

"Most of the frequencies are in the liquid state¹; however, the overall change in the value of thermodynamic functions due to vapour-liquid shift is expected to be within $\pm 1\%$ (Ref. 3). "Wagging mode —internal vibrations of CF₃ group of b_1 class, expected to occur in range v = 200 to 400. See Ref. 1. In this work we have used the average value of 300 cm⁻¹. "Calculated this work using suggested (Ref. 1) bond lengths and angles. "See Ref. 1. "Calculated this work. Bond lengths and angles chosen as suggested by Ref. 1. "See Ref. 1. "See Ref. 2.

ACKNOWLEDGMENT

The financial assistance of the National Research Council of Canada is gratefully acknowledged.

REFERENCES

-

- 1 R. T. BAILEY AND S. G. HASSON, Spectrochim. Acta, 24A (1968) 1891.
- 2 E. R. COHLN AND J. W. M. DUMOND, Rev. Mod. Phys., 37 (1966) 537.
- 3 W. G. FATELEY, I. MATSUBARA AND R. E. WITKOWSKI, Spectrochim. Acta, 20 (1964) 1461.
- 4 K. S. PITZER AND W. D. GWINN, J. Chem. Phys., 10 (1942) 428.
- 5 University of British Columbia Computing Center Library Program, TRIP (1969).