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ABSTRACT

The TG trace corresponding to a heterogeneous process which proceeds with
a constant increase of the temperature can be described by the equation

log g{o) — log p(x) = B

where « is the fraction decomposed, function g(a) is given by the rate controlling
process and function p(x) depends on its activation energy. Both functions log g(x)
and log p(x) are approximately linear functions of 1/7. The value of B is independent
of the temperature. On plotting log g(«) vs. 1/7 calculated from TG trace for different
possible g{a) the most probable mechanism corresponding to the linear plot can be
estimated. From the slope of this straight line the corresponding value of activation
energy can be calculated.

INTRODUCTION

There are known many methods for the determination of the kinetic parameters
from dynamic thermogravimetric measurements'*2. In the recent paper® a simple
graphical method was recommended. The present paper tries to simplify the estimation
of the reaction mechanism.

PRINCIPLE OF THE METHOD
On assuming that the non-isothermal experiment proceeds in an infinitesimal

time interval isothermally, the rate of it may be described by the equation

dax
— =Z-e EHRT.§ 1
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where a is the fraction decomposed in the time 7, f(x) depends on the mechanism of
the process, E is the activation energy and Z is the preexponential factor. In the case
of the constant temperature increase d7/df = g the integration of Eqn. (1) leads!** to
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The function p(x) is defined as'—*
P(x)=e— - “ £ du=e—+Ei(—x) )
X < =x U X
where u = E'RT, x = E;RT, and T, is the temperature at which the fraction a of the
starting material has reacted.
From the logarithmic form of Eqn. (2)

log g(2) — log p(x) = log IZZ—E @
q

it can be seen that its right hand side is independent of the temperature. Thus the
difference of log g(x) and log p(x), both functions of the temperature, does not depend
upon the temperature in the whole temperature interval in which the process proceeds.
The function log p(x) is, to a first approximation, a linear function of 1/T, if x is
stfficiently large> (see Fig. 1) and, therefore, log g(x) must also be a linear function of
1:T,. For the correct mechanism log [g(2)] thus be linear function of 1/7,. The values
of log g(x) calculated for the various rate processes using TG trace and plotted vs.
the corresponding 1/7, values should give a straight linc only for the rate process
[log g(2)] which can be designated as the most probable. The others, for which this
plot is not linear, can be refusec. The sensitivity of this procedure for the mechanism
determination is, as in all non-isothermal methods, not too high. But it yet gives
valuable and useful informations. The determination of the rate process is not com-
pletely unambiguous as it can be seen from the example in Fig. 2. The bottom curve
represents the TG trace for a process which can be described by the kinetic equation

—In(1—2)=kt )
This type of the equation is frequently employed in the literature*. The upper curves
are the plots of log g(x) rs. 1/ T, being calculated from the scanned TG trace employing
various kinetic equations (see Table I). The symbols used are the same as in the
paper of Sharp e al.® (for more detaiied review of functions g(«) and f(x) see Ref. 7).

TABLE1

KINETIC EQUATIONS

Furction Eguation Rate-controlling process

D, x* =kt One-dimensional diffusion

D, (1 —x)In(1 —x)+x =kt Two-dimensional diffusion, cylindrical symmetry

D {1 —(1—x)3}* = ks Three-dimensional diffusion, spherical symmetry;
Jander equation

Dy (-1 —(1—x)3=Fks Three-dimensional diffusion, spherical symmetry;
Ginstling-Brounshtein equation

F, —In(l—x}=kt Random nucleation, one nucleus on each particle

Ay AV -I(l—)=kx Random nucleation; Avrami equation I

Aj {’/ —In(l —x) =kt Random nucleation; Avrami equation II

R; 1—(1—ay=ks Phase boundary reaction, cylindrical symmetry

Ry I—(l—x)¥=ks Phase boundary reaction, spherical symmetry
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Fig. 1. Plot of —log p(x) vs. 1/T for various activation ene:
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Fig. 2. Procedure for evaluating TG curve. Lower curve complies with kinetic equation F; (see
Table I) E=30kcal-mol~*, Z=10"%s~'-mol~* and q = 1°C-mia~!. Upper curves are plots of
log g(=) es. 1/ T, calculated from TG curve for various kinetic equations. The straight line for kinetic
equation F, coincides with the plot of —log p(x) vs. 1/T for E = 30 kcalfmol.
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Only the plot for Eqn. (5) (Fy) gives a straight line. The other equations can be
refused. Deviations from the linearity are comparatively very small in the case of the
Eqgns. A, and A;. The other informations about the process studied are evidently
required for the correct decision concerning the choise of the true mechanism for the
process investigated. The value of activation energy E can be determined by the trial
and error method. Introducing the slope of log g(x) vs. 1/7, and the mean value of
the temperature from the interval in which the process proceeds the following equation
can be derived (see Appendix)

tgq = S1BPC) _ _E [ 1 ] ©)
1 R | x(i —x.e*. Ei(—x))

d—
T

and the value of E can be calculated.
For large values of x the activation energy can be calculated approx1ma tely from the
equation

E=x~ —tga++/tg’a+8tga-T ©))

where tgx is the slope of the selected linear plot of log g(«) vs. 1/T, and T is the mean
temperature. The value of E can be found easy by a comparison of the slope of
the straight line of log g (=) vs. 1/T, with a set of the lines of log p(x) vs. 1/T (Fig. 1)
constructed for the different values of E. The slope of both functions should be the
same in the temperature interval in which the process proceeds.

APPENDIX

The function p(x) is defined by the equation

p(x) = -——+El( x) (A1)

where the exponential integral® is defined as

Ei(-n="_q-14+Z 3,2 _ , (A2)
X

x x* x* x*

E
fo = — (A3
FXERT )

Than

p(x)=°—;[—1-——-2—i+§§—5é+...] (A4)
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1 ]
log p(x)= —x + log[—l-—%-i-}: - ]
_"C p 4 X

The differentiaticn of Egn. (5) gives

d log p(x) _ _ 1
dx 2t 3¢

Rearranging Eqn. (6) and introducing Eqn. (2) it can be obtained

d log p(x) _ 1
dx x[1—x.e* Ei(—x)]

The slope of log p(x) zs. 1/T is then

d log p(x) [ ]
d [1—xe" El(-x‘]
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