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ABSTRACT 

The TG trace corresponding to a heterogeneous process which proceeds with 
a constant increase of the temperature can be described by the equation 

log g(a) - log p(x) = B 

where a is the fraction decomposed, function g(z) is given by the rate controlling 
process and function p(x) depends on its activation energy. Both functions log g(z) 
and log p(x) are approximately linear functions of I IT. The value of B is independent 
of the temperature. On pIotting log g(a) zx l/T, calculated from TG trace for different 
possible g(a) the most probable mechanism corresponding to the Iinear plot can be 
estimated, From the slope of this straight line the corresponding value of activation 
energy can be calculated. 

INTRODLiCTION 

There are known many methods for the determination of the kinetic parameters 
from dynamic thermogravimetric measurements’*2. In the recent paper’ a simple 
graphical method was recommended. The present paper tries to simplify the estimation 
of the reaction mechanism 

PRINCIPLE OF THE MEIHOD 

On assuming that the non-isothermal experiment proceeds in an infinitesimal 
time interval isothe,rmally, the rate of it may be described by the equation 

d”=Z-e- 
dt 

EiRf - f(z) (1) 

where a is the fraction decomposed in the time t, f(z) depends on the mechanism of 
the process, E is the activation energy and 2 is the preexponential factor. In the case 
of the constant temperature increase dT/dt = q the integration of Eqn. (1) leads’14 to p da 

-=g(a)=z-p(x) 
Q f(a) 
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The function p(x) is defined ass4 

p(,+<_ =~dU=e-‘;Ei(_x) 
F (3) 

x ~ +x u X 

where u = E!RT, x = Ei’R7” and T, is the temperature at which the fraction a of the 

starting material has reacted- 

From the logarithmic form of Eqn. (2) 

ZE 
log g(2) - log p(x) = Iog - 

Rq 
(4) 

it can be seen that its right hand side is independent of the temperature. Thus the 

difference of log g(z) and logp(x), both functions of the temperature, does not depend 

upon the temperature in the whoIe temperature interval in which the process proceeds. 

The function Iog p(x) is, to a first approximation, a Iincx function of l/T, if x is 

sutficiently large’ (see Fig. I) and, therefore, log g(-z) must ho be a linear function of 

I jT,_ For the correct mechanism Iog k(z)] thus be linear function of I /7’.‘._ The vaIues 

of Iog ,&z) cakulated for the various rate processes using TG trace and plotted ES. 

the corresponding IjT, vaks shouId gke a straight Iinc only for the rate process 

Uog g( II h- h I w IC can be designated as the most probable. The others, for which this 

plot is not linear, cam be refused_ The sensitivity of this procedure for the mechanism 

determination is, as in a11 non-isothermal methods, not too high_ But it yet gives 

valuabie and useful informations. The determination of the rate process is not com- 
pletely unambiguous as it can be seen from the example in Fig. 2. The bottom curve 

represents the TG trace for a process which can be described by the kinetic equation 

--In (I -z)=kf (5) 

This type of the equation is frequently empioyed in the literature*. The upper curves 
are the p!ots of Iog g(z) L’S. I !T, being calculated from the scanned TG trace employing 
v_arious kinetic equations (see Table I)_ The symbols used are the same as in the 

paper of Sharp er af.6 (for more detaiied review of functions g(a) and f(z) see Ref. 7). 

Rate-controiKngproccss 

z==kl One-dimensional difiikon 
(I -I)m(x -z)fz= X-r T~o-dimcnsional diffusion, &indricaI symmetry 
[l -(l -z)+]= = X-r Three-dimensionaI diffusion, spherical symmetry; 

Jmdcr equation 
(I-~~)-(l-z)i=kr Three-dimensional diffusion, spherical symmetry; 

Ginstling-Brounshtein equation 
-In(i-z)=kf Random nucleation, one nucleus on each particle 

~‘-in(l-z) =h-r Random nucleation; Awami equation I 

Q--ln(l-z)=kr Random nuckation; Avrami equation II 
I--(I-~)i=kt Phase boundary reaction, cyiindricai symmetry 
r-(I--rr)i-=kr Phase boundary reaction. spherical symmetry 
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Fig. 1. Plot of --log p(x) us. l/T for various activation energies E. 



426 v. SATAVA 
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Es_ t Procedure for evaluating TG curve_ Lower 

TaMc I) E= 30 kcal-inol-‘, Z= 10”s-I-mol-’ 
curve complies with kinetic equation Fs (KC 

Ioggicr)c% l/T,- 
and q = I%-mia- I. Upper curves are plots of 

from TG QLNC for various kinetic equations- The straight line for kinetic 
wattion Fx akcidcs with the pbt of -log p(x) as. 1 JT for E = 30 kcaI/mol. 
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Only the plot for Eqn. (5) (Fr) gives a straight line. The other equations can be 
refused. Deviations from the linearity are comparatively very small in the case of the 
Eqns, A2 and AS. The other informations about the process studied are evidently 
required for the correct decision concerning the choke of the true mechanism for the 
process investigated. The value of activation energy E can be determined by the trial 
and error method. Introducing the slope of log g(z) his. l/T, and the mean vaiue of 
the temperature from the interval in which the process proceeds the following equation 
can be derived (see Appendix) 

tgz = d log P(X) = E -- 

cd 
R 

T 

1 1 -x_e*. Ei( -x)) 
(6) 

and the value of E can be calcuIated. 
For large values of x the activation energy can be calculated approximately from the 
equation 

tg2r+8 tga- T (7) 

where tgE is the slope of the selected linear plot of log g(r) ES. l/T, and T is the mean 
temperature. The value of E can be found easy by a comparison of the slope of 
the straight line of log g (CC) C-S_ l/T, with a set of the lines of Iog p(x) zx l/T (Fig. 1) 
constructed for the different values of E. The slope of both functions should be the 
same in the temperature interval in which the process proceeds. 

The function p(x) is defined by the equation 

p(x) = 5 -I- Ei(-x) 

where the exponential integral6 is defined as 

Ei(-x) = e ~(1-~+~2+$ - ___) 

forx=E 
RT 

(Al) 

(4 

(A31 
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and 

Iogp(x)= -x+-log 
[ 
L-2!;3!_ ___ 
_x2 x3 _x& I 

The differentiaticn of Eqn_ (5) gives 

dIogp(xI= _ ,, 1 
dx 

1 
_- 3! 4! ---f---j ___ 
x x2 x3 

Rearranging Eqn. (6) and introducing Eqn. (2) it can be obtained 

d log p(x) = _ 1 

dx x[l-xx.eX Ei(--x)1 

The dope of log p(x) fx l!T is then 

d 10~ p(x) = E 1 

d1 
- E I Cl -x-e= Ei(-xjj 

T 
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