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The thermal degradation of polymers is expIored generally by the experimental 

technique of thermogravimetry (TG). Existing mathematical methods for processing 
dynamic TG data to obtain kinetic parameters for non-linear models require data 

obtained at a constant rate of temperature rise and employ one or more graphical 

techniques, which are time-consuming and lead to some inaccuracy. A recently 

deveIoped numercial approach to the determination of kinetic parameters which avoids 

the forementioned problems and provides a rapid, fIexibIe, systematic, and accurate 

technique is the BeIIman-Kalaba method of quasilinearization. 
Their genera1 technique is extended and applied to TG data. The method presen- 

ted utilizes the experimental thermogram(s) directly and selects the kinetic parameters 

by a least-squares-optimization procedure to best fit the data. The calculations are 
conveniently carried out on a digital computer. The technique has been applied to 

data on the thermal degradation of high-temperature polymers including polypheny- 

Iene, poiyimide and polyquinoxaiine. 

INTRODUCl-IOS 

In an attempt to quantitatively describe the kinetics of thermal decomposition 

of polymeric materials, a number of laboratory techniques have been employed with 

some success. Of these, thermogravimetry (TG) probabIy has been the most widely 

used experimental tool. The objectives of TG experimentation are the generation of 

thermo,orams from which a kinetic model can be formulated which describes the 

thermal decomposition. TG data are also used in formulating and verifying postulated 
mechanisms of pyroIysis. 

The mathematical anaIysis of experimental TG data for the purpose of deter- 
mining the kinetic parameters of a suitable reaction-rate equation has been the subject 

of many papers and review articles I-‘_ In general, commonly used methods require 

data obtained from a constant rate of temperature rise, and employ one or more 

graphical techniques for the determination of kinetic parameters. A recently developed 

*CurrentIy with Eastman Kodak Company, Rochester, New York. 



60 

numerical method, which avoids these problems and provides a systematic approach 

to the determination of kinetic constants, is the quasilinearization technique of 

Bellman and Kalaba5. This method utilizes experimental data points directly. and 

selects kinetic parameters by a Ieast-squares-optimization procedure to best fit the 

data. The method is iterative and requires an initial assumption of the values of the 

constants. The lack of guarantee of convergence is the primary difficuity with the 

approach. 

Nevertheless, quasilinearization is a powerful analytical tool which offers three 

significant advantages over most of the presently employed techniques for analysis 
ofTG data: (1) It is not necessary to maintain a constant-rate temperature rise during 

the experiment_ A compIetely ffexible temperature history, inchiding periods of dif- 

fering rates of temperature rise and et-en isothermal segments, can be successfully 

handled. The increased analytical fiexibility greatly extends the types of experimenta- 

tion possible. (2) Multiple experimental runs may be combined in a single data analysis 
if desired_ That is, similar experimental thermo_wms for a given material may be 

cclIectiveIy analyzed to yield a single set of optimized kinetic parameters. (3) Inac- 
curate data handling procedures such as graphical data analysis and slope measure- 

ments are completeiy avoided_ 

DEVELOPMEXT OF THE QUA!SILlK EARIZATION -l&El-HOD 

In applying quasilincarization to TG data, a power law rate function of the 

folIowing types is usuahy assumed. 

ldm k ---= 
u;, dt 

W-Wr 

[ I- w 0 
(1) 

where u-, = initial weight of polymer, U-, = final weight of residue after compIete 

degradation, KC = instantaneous weight of poIymer-residue materiaI during the degra- 

dation process, z = time, and n = kinetic order of the degradation reaction. 

Eqn. (I) may be written 

dW --= k W= 
dt 

(2) 

where k = specific rate constant and W= (zc-r~~),‘zc~. The rate constant k is assumed 

to depend on the absohrte temperature according to the Arrhenius law 

k = _qe-E/R= (3) 

where A = pre-exponentiai factor, E= activation energy, R = universal gas constant, 

and T = absolute temperature_ 

The problem of determining the kinetic constants A, E, and n in Eqn. (2) is 

transformed to the estimation of the initial conditions for a system of time-dependent 
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differential equations. This is done by assuming that the constants are functions of 
time such that the foliowing equations are satisfied. 

dM’ -= -Ae 
dt 

- E/R7 W”, W (0) = 1 - u;,jzO ; (4) 

dA 
- = 0, A(0) = A,; 
dr 

(5) 

dE 
- = 0, E(0) = E,; 
dt 

(6) 

dn 
-= 0, n(0) = n,; 
dt 

(7) 

dT 
- = p, T(0) = To; 
dt 

(S) 

where p is a known function of time. The latter equation is equivalent to having 

T= 4(t), T(0) = To. 

The intent is that all quantities in the equations are functions of time and that the 

unknowns appearas initial conditions. Eqns. (4x7) are linearized by converting them 
into sequences which, with reasonable initial assumptions will rapidIy converge to the - 
best values of the kinetic parameters. Thus, if 

dW 
- = f(W, A, E, n) 
dt 

then , 
d wi+ 1 

dt 
= f ( Wi, A’, E’, 12’) + g_ (A”’ -Ai) + 

“1-E’) + 
2j-i 

_ (ni+f’ 

5 n’ 
-n’) + ignored higher-order terms 

where the i superscripts indicate the particular iteration. 
In expanded form, Eqn. (10) becomes 

&pi I 

PC- 

dt C 

A’ e-Ef/RT (r#7i)n’+ ,i Ai e--Ei/RT (wiyzf-1 (1vi-F I_ wi) -t 

e -&f/RT (wi)d (Ai+ I __Ai) _ 6 e--E'/RT (wi)d (Ei+ 1 _E’) + 

A'e- 
.??lRl in wi (wiy’ cni+ 1 _ ni~ 1 
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d.4”‘= 
0 

dt 
(12) 

dE”’ o - = 
dr 

(13) 

dn ii I 

-= 0 
dt 

(14 

The iterative procedure is initiated by assuming vaIues of A’, E=, and nc and 

solving Eqn_ (4), by the Runge-Kutta numerical procedure, for W’(t). Setting i = 0, 

the linear differential Eqns_ (I 1)-(14) are solved for W’(r), A’, E’, and n’ by the 

procedure of forming a particular and homogeneous soktion. 

The soIution of Eqn. (I I) can now be represented in the form 

It”’ 1 tt) = gi 1 (t)+r’,t 1 hi+ 1 (r)+z;+ 1 I,;+ 1 (I)+ry 1 j&i 1 CL) 

where cc: i-1 are constants to be determined. Thus, 

dPii 1 -=- 

dt 

,-&‘iRT lli (rr;i)tP- I (pi+ 1 _ Fyi) + 

( wiy’ _di e- E’/RT (-E’) + ~ie-E~:Rf(~i)n’In (iVi)(-ni) 1 
an-d pii * (0) = W(O), a&o 

d% ’ -=- 
dt 

e-&i/RT .i (rg~i)m’- 1 (I~;+ 1) + (rviyi e-&‘:IRT (Ai+ 1) f 

(rpGy‘ Ai e-Ei;RT 

(I@ 

(17) 

The foIiowing convenient values of initial conditions are chosen: 11~~’ (0) = 0; 

A i+l (0~~ I; E:+X (O)=O; andn”’ (O)=O_ 

SimiIarIy, 

(rviy’ Ai e-Ei.!RT -E’/RT (wiy’ ln (Wi)(ni+ 1) 1 iw 
with hi+’ (O)=O; ,4”’ (O)=O; Eifl (0)= I; andnit’ (O)=O. 
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(~i)d Ai e- E?/RT 

with hi+ ’ (O)=O; /lit1 (O)=O; E’+’ (O)=O; n’*’ (O)= 1. 
With i = 0, Eqns. (16), (I 7), (I S), and (19) may be solved by the Runge-Kutta 4th-order 
method for p’(t), hi(r), h:(r), and h:(r). The constants CC;*’ are determined for each 
iteration such that the objective function, Q, is minimized_ 

W’f’ 
1 

1 

@j) - wj. DA-I-A 
j-1 

W) 

where w+‘(lJ are the computed points and W;,uAfA are the correspondingdata 
points for the particular times. 

For i = 0, the objective function becomes, 

Qr = jl 
[ 

t 
P’ Oi) f %; 11: (tj) + %: h; (tj) -i- z$ hi (tj) - wj,D,,T,, 1 (21) 

For a minimum Q, 

ZQI 20, 
-= 
az: 

- = 0; and - = 
za: 0, (22) 

or 

[c P * (j) t + a: 11: (tj) -i- 2; h: (tj) + ai hi (rj) - W$DATJ h: (ri> 1 = 0 (23) 

-!- a: hi (ti) f cz$ hi (rJ f a$ hi (ii) - H>_DATJ hi (ti) 
I 

= 0 (24) 

f Z: hi (ti) 4 Z: hi (ti) i- 2: hi (rj) - Wj,DATA] hi (tj) 1 = 0 (25) 

Eqns- (23), (24), and (25) are solved simuh.aneousIy for a:, ri, and ai using experi- 
mental values of Wi,uATA at rj, and the computed p*, hi, hi, hi at the (k)ri values. 
The resulting a values are reIated to the next set of kinetic parameters as follows: 
ai = A’, 2: = E’, and a: =d. 
Tixe iterations are continued until the parameters A, E, and R converge to within rea- 
sonable tolerances. When programmed for a digital computer, e.g., the Univac 1108, 
the computations are extremely rapid. Data from more than one thermogram may be 
utilized. In this case a set of equations, one for each thermogram, of the form of 
Eqn. (11) are solved, and the objective function in Eqn. (20) is expanded to include all 
data sets. 
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Convergence of the quasilinearization technique given above is the major dif- 
IkuIty in its application. Realizing that a good initiaI guess of the w&es of the con- 
stants is necessary for convergence, we have used crude saphicai methods to yieid 
preliminary vaiues. Probabiiity of convergence is also enhanced if one of the para- 
meters is constrained until the others have reached an optimized vaIue. The concept 
of constrained parameters permits a variety of calculation strategies, each of which 
should converge to the same result Of course, the required computer time can vary 
significantIy, depending upon the strate_gy chosen. 

Many of the probIems associated with convergence in non-Iinear curve fitting 
can be reduced through reparameterization Several different techniques of repara- 
metcrization have been published’*‘, and KittreIIS has discussed their application to 
kinetic anaIysis. SpecificalIy in the case of a simple Arrhenius model 

k = A e-EN- 
(261 

estimation of the two parameters from experimental data may yield a contour of 
convergence on a sum-of-squares surface which is very restricted. Convergence of an 
iterative routine for such a system may be slow or none_xistent. Experience seems to 
indicate that kinetic models should be reparameterized by a redefinition of the inde- 
pendent variabIes_ SpecificalIy, KittreII recommends that the exponential parameter 
1 : = A esEIRr be redefined as 

where 

We have taken the vaIue of Tas the temperature at the point of maximum rate of 
n-eight loss. 

These modifications, which are mathematically equivalent to the original expres- 
sion, transform the contour of convergence. Parameters A and E are obtained more 
readily, initial estimates are less critical, and convergence is more rapid. The applica- 
tion of this form of reparameterization to the quasilinearization equations is straight- 
forward. 

It is occasionahy obvious from inspection of a thermogram that more than a 
singIe weight--loss mechanism is occurring_ The extension of the quasihnearization 
technique to a two-mode model illustrates in general the procedure for handling mul- 
tiple modes. 

It has been assumed frequentiy that the to*&1 weight loss of a sample is the sum 
of two independent pamIle reaction mechanisms, each associated with a fraction of 
t-lie original sample weightg_ Thus, 

dwiil --dv l -_d@’ l 
- - = 

dt dt + dt 
= (jvf)“: A; e-E:/RT + 

(29) 
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where jy - w-wr, w, = wl-wr*l, bt; = lC2 -=r.z, 

wo wo.1 wo.2 

and w, frc, = w, z+~ +LC,,, = LC~. 

In this case the approach is to determine independently the particular and homo- 

geneous soiutions of each mode and consequently W,(t) and WZ(z). Using the defining 

equations, I(;~ and w2 are calculated. 

GraphicaI integration of a reaction peak on a plot of rate-of-weight-loss 

L‘S_ temperature yields vaiues of IL’,-+. In order to obtain values cf wi, an assumption 

is usuahy made as to the value of wXsi_ Generally it is assumed that one reaction pro- 

duces only gaseous products and the other, therefore, ,-i4ds all the char residue. 

Using this assumption, or any other justified by experimenta: evidences, values of 

IQ are caIculated. The combination of zcr and w2 yields u;‘*‘(t), which is used in the 
calculation of the objective function 0. With these modifications the solution proceeds 

as outlined for a singIe mode. 

APPLICATION OF THE QUASILI?r~RIZATION METHOD 

Experimental TG data were obtained for a phenyi-substituted poly-quinoxaline 

polymer using a Cahn RG EIectrobaIance. The polymer was prepared by Wrasidlo 

and AugI of the U.S. Naval Ordnance Laboratory by one-step solution condensation 

of 3,3’-diaminobenzidine with 1,5bis(phenyIglyoxaloyI)benzene at room tempera- 

ture. An infrared spectra of the polymer showed no carbonyl band and no residual 

NH band, thus indicating complete cyciization to give: 

The resin sample as received was a light yehow flocculant powder. TG data were 

obtained on the polymer as received with no prior resin advancement. 

A dynamic thermogram obtained with a non-flow helium atmosphere is shown 

in Fig. 1. The temperature-rise-rate empIoyed in this test was lO”C/min. Numerical 

differentiation of discretized data produced the rate-of-weight-Ioss curve shown in 

Fig. 2. The appearance of two reaction peaks, which are reasonabIy separated, presen- 

ted a good opportunity to test the application of the quasilinearization method to a 
two-mode model as described by Eqn. (29). 

Se\ ZraI computational strategies using the quasilinearization method were 
tried before convergence was obtained in the iterative calculations, leading to optimal 



Fig. 1. D_ynamic thermogram for polyquinoxaline at IO’Cjmin in non-flowing helium. 

Fig. L Rate of weight 10s~ for polyquinoxaline in non-ffowing helium. 

vaIues of the kinetic parameters. As a first attempt, graphically obtained values of 

kinetic parameters were used as the initial approximations in an unrestrained c&xl- 

ation This calculation faiIed to be sufficiently stable to permit convergence, apparently 

because of the very sensitive interaction between the two reaction modes. 

As a second trial, it was attempted to optimize the parameters of the second 

peak with those of the first peak, with the order of reaction cf the second, n,, held 

constant at an assumed constrained vahxe. The reverse calcrdation was aIs tried 

holding n, constant. While these approaches did Iead to some convergent values 

the sensitivity of interaction between the parameters made optimization of the com- 

bined modes very Iaborious. 

The third and best approach tried was to optimize first the kinetic parameters 

of the first reaction peak using onIy data taken before the second reaction peak became 
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activated_ However, it was necessary to constrain n, during these calculations. 
Graphical values of n, had been obtained which varied from I.6 to 2.0. Computer 

caIculations using the quasilinearization method were carried out for various con- 
strained vaIues of n,. The resulting optimal vaIues of A 1 and E, are shown in Table I_ 

TABLE I 

CONVERGENT KINETIC PARAMETERS FOR THE FIRST REACTION 
PEAK OF POLYQUINOXALINE 

A‘(sec-‘) El WI) Sum of Ieast squures 

1.0 7.050 x IO9 46,627 0.1328 x lo- 1 
I.6 2.680 x 10’3 58,369 0.6686 x 1 o- * 
1.7 1.102 x lo’* 60,394 0.5973 x I o- 2 
1.9 1.929 x Iox5 64,502 0.4787 x IO- 2 
2.0 8.212 x 10’5 66,585 0.4299 x I o- 2 
3.0 2.980 x 1022 88.445 0.1956 z-c 1O-2 

The Ieast squares fit of the data shown in Table I seem to justify use of an n 

even larger than 3.0. However, the convergent parameters for an n of 3.0 seemed to 

predict a greater weight Ioss near the end of the first reaction than that actually obser- 

ved. 
Having now an indication of the magnitude of the parameters for the first 

peak, values of n,, A2 and E2 for the second peak were sought while the parameters 

for the first were held constant_ Combinations of n, and n, were tried with the result 

that n2 was found to be near 2.0. Values of n2 either greater or Iess than 2.0 seemed 

to lead to poor a_aeement with the data. 

Tempero!ure, “C 

Fig. 3. A wmparison of data cmd numerically optimized results for polyquinoxaline. 



68 

As a fInal step in applying the two-mode model, both reaction peaks were optim- 
ized sixnuitaneousfy. In this case it was still necessary to constrain the values of n, 

and n,. The rest&s of severaI combinations are presented in Table II to iliustrate the 

trends. Vaiues_of 3.1 for n, and 2.0 for nz ap_peared to give the best fit of the data. 

Fig. 3 illustrates a comparison of data and computed points from optimized 

kinetic parameters for “I = 1.9 and n2 = 2.0. Fig. 4 shows a simiIar pIot for n 1 = 3.0 

i- 

3, = 5.0 

.r. 2 = 2.0 
i 

Fig. 4. A comparison of data and numericalIy optimizd results for polyquinowlinc. 

andnz= 2.0. As can be seen in Fig. 4, the parameters determined by quasilineariza- 

tion describe the cornpIes dynamic reaction curve very well. The fit of the parameters 

sbown in Fig. 3 is obviously inferior to that shown in Fig. 4 and yet the over-all 

conformity is reasonably good. Such an observation emphasizes the need for accurate 

data for use in determining kinetic parameters, since inconsistencies or scatter would 
seriously affect the final results. 

TABLE II 

COit’VERGEM KINErIC PARAMETERS FOR POLYQUINOXALINE PYROLYSIS 

“1 Ax <xc- ‘) El (CaT) + A2 @cc- ‘) EZ WC) Sum of ieast squares 

20 1.242 2-z 10’2 84,M9 1.9 7.195x IO” 62,109 0.1432x IO-’ 
3.0 1.394 x 102’ 87,232 2.1 1.161 x iOx 66,814 0.1425 x 10-t 
2.9 2574 x 102’ 84,758 2.0 3.836 x IOx 65,028 0.1523 x10-’ 
3.Q 1.474x 102’ 87,104 2.0 1.020x 10’3 64,445 0.1426~ lo-= 
2.1 6.818 x 10’2 89,545 2.0 2.171 x 10” 63,889 0.1353 x 10-z 

In aII of the quasihzariza tion calculations discussed above for poIyquinoxaIine 

it was assumed that the material was composed of two parts which reacted indepen- 

dently to form both gas and char. It was further assumed that the starting material in 

both reactions produced the same fractional char yield as was determined for the 
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combined reaction from the dynamic thermogram. Other assumed mechanisms have 
been evaluated by Burningham” using quasilinearization- 

Mathematical analysis of thermogravimetric data by the technique of quasili- 
nearization offers several signScant advantages over many commonly employed 
methods. Quasilinearization, as developed in this paper, has been sucwssful!y applied 

to the kinetic analysis of para-polyphenylene, polyquinoxaiine and polyimide poIy- 
mers. Only the polyquinoxaline example is included here. Only a few of the many 
possible applications of this powerfui technique to the kinetics of polymer decompo- 

sition have been explored. 
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