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ABSTRACT

Assuming the validity of the law of mass action for particles, the relationships
for the calculation of the activities of chemical individuals from the concentration of
particles in a homogeneous system, are derived using the transformatior: of baricentric
coordinates. These relationships can be applied to general disorder models, and they
can serve for the selection of the correct and optimum methods for the comparison
between disorder models and experimental data. Possible methods of application to
binary and ternary systems are discussed.

INTRODUCTION

The disorder models (Fehlordungsmodellen) are, for the most part, derived
under the assumption that the concentrations of the particles obey the law of mass
action. According to this law the constancy of the product, K{, in the equation

X vy __
Ki = 11 X¥ = constant ¢))
J&!

where X is the concentration, and v; is the stoichiometric coefficient of the jth type
of particle (negative for “starting™ particles), ought to be fulfilled for the reaction [L]
[MvJ =0 (L]
JsL :
between tke different types of particle, J, for the system in equilibrium at a given
temperature.

From the definition of the activity particle a;, of the jth type of the constancy
of the activity product results

K¢ =] ay = constant )

FAR
Considering this fact, there is a parallei validity of the relationship between concen-.
tration and activity for every tvpe of particle in the system, i.e.

a;{ X; = constant (€2

which is a sufficient condition for the validity of Eqn. 1.
As it is known from the statistical treatment, Eqn. 3 is valid for the following
particular cases (where X; means molar fraction): (i) the concentration of particles is
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near to zero (Henry’s law); (ii) the pair interactions of particles are compensated*
(Raoult’s law); and (iii) for ionic substances, the pair interactions between ions of the
same sign of charge are compensated (Témkin?).

Although the more general and more precise statistical models do better justice
to the real behaviour of substances, the application of disorder models as the first
step of a quasi-chemical approach, is still important. Driessens® has shown, after
thorough compilation, that numerous solid solutions obey the law of mass action
for particles.

Driessens®, comparing the disorder model of solid solutions of Mn;0,;,-Co;0,4
with the literature data about the activities, has used the relationships ac,,0,=
1[Co27¥1-[Cod*P and auu,o,=23[Mni7]-IMn3*]* (where the particle type in
square brackets, [J], means the number of particles per one spinel formula A,B;_,0,),
for the calculation of the activities of the chemical individuals Co;O; and Mn;O,,
as based on the assumption of strictly normal cation distributions in both of the pure
components. Schmalzried and Tretjakov®, among others, have calculated the activity
of magnetite in Fe;0,-NiFe,O, solid solutions, employing the correlation corre-
sponding to the strictly inverse distribuiion in pure magnetite, i.e., @0, = [Feg*]-
[Fe3*]1-[Fe3 ]

There arises the question of how to calculate the activity of chemical individuals when
the more general assumptions are used. It can be seen from the available literature,
that relations for the calculations of the activity of chemical individuals from particle
concentrations, are performed only for the particular cases, but no general approach
is reported. The establishing of more general relations is the aim of the present paper.

EXPERIMENTAL AND RESULTS

Homogeneous systems with chemical individuals as components
The Gibbs free energy of an n-component homogeneous system, in equilibrium,
at constant temperature (7)) and pressure (P), is given by

G = i‘, Hin; @
i=1

where ; =(0G[0N)r p ny 2 —constae 1S the chemical potential, and #; is the mole
number of the ith component (chemical individual). When the total number of moles

n= )Y n; and the mole fraction of the ith component X;=n;/n, then the integral

i=1
molar Gibbs free energy G, is given by
Ga=Gln = 3 X, )

The chemical potential y; is commonly separated into two terms, i.e.
#i=p+RTIna; ©

* ¢.g., for the system constituted from two sorts of particles A and B, compensation occurs if the
relation 2,5 —£aa—¢&s = 0 is valid’.



DISORDER MODELS . 477

The first term, u?, is called the standard chemical potential, and is equal to the molar
Gibbs free energy of the pure ith component; it is independent of composition. The
second term includes the activity as a function of the molar fractions X;. Then from
Eqns. 5 and 6

M™ia

G, =Y X:uf +RTIna) )

i

1l
-

The integral Gibbs free energy of mixing is defined as
AG™* =RT Y. X;Inga; ®)
i=1

On considering point R of the homogeneous region of the system which
corresponds to the composition expressed by the molar fractions X7, then the Gibbs

free energy of mixing at this point is given by
n
4GF* = RT ¥ XFIna} ©
i=1

where aF are the activities of the components at the composition point R.

A system of this composition represents a pure chemical substance R, which
need not be a chemical individual in the ordinary sense. It is not erroneous tc deter-
mine the molar Gibbs free energy at the point R as the standard chemical potential
of substance R, i.e.

Gi=Y W X}+RT ¥ Xilnal = (10)
i=1 i=1

In addition, the original #n-component system can be divided into #n sub-systems, in
which one of the original components is always substituted by the new component,
the chemical substance R. Then for a sub-system, where the nth component is substi-
tuted, we have

n—1
Gn = Z Y — prY¥g (11)

i=1

where Y; and Yy are the molar fractions corresponding to the new choice of compo-
nents. According to the transformation of baricentric coordinates, it can be found
that

Y= X;— X¥ x X, /X% and Yg = X /X% (12)
The chemical potential of substance R, uy can be introduced symmetrically to Eqn. 6
Hr =HS+RT In ag (13)
using the quantity @z, which can be called the activity of the substance R. From
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Equs. 9-13, the following relations are obtained
nay = 3 X% In(ajal)
(14)

Inag = AGF™[RT — ), XY Inaq;

i=f
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Fig. 1. The gecometrical representation of the relationship between Gibbs free energy of mixing and
the activity of components (g, and ay), and the activity (ag) of the intermediate member of the solid
solutions A-B.

The geometrical representation of the relationships between ag, a;. Xz, X;.
AGE™, AGR™ in the binary system is given in Fig. 1.

Homogeneous svstems with particles as components

Considering the same homogeneous system as above in equilibrium, but with
particles as components, the number of particle types, m, is usually greater than »n.
The Gibbs free energy of the system is given by

G = _}i N;u; (15)

where N; is the mole number and u; =(0G/ON})r p .+ =consiane 1S the chemical
potential of the jth type of particle.
The total mole number N and the molar fractions X; are then, respectively,

m

=1

Jj=
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and the molar Gibbs free energy G, introduced by Eqgn. S is given by

i=1
where & = Njn (18)
and g; =49+ RT In g; (19)
so that
Go= Y X;W}+RTIna) (20
i=1
For the point R of the system
Gr = & _}:l XR(p% + RT In a%) = p} (D
]=

is obtained, where & means the ratio of the total mole number of particles at the
point R to the total mole number of chemical individuals at the same point.

We now introduce *“average” particles r, one mole of which is identical with
a mixture of m sorts of particles j, in amounts corresponding to the molar fractions
XJ’.‘, and with a standard chemical potential of

g2 =Y X%ul+ RTInah) (22)
ji=1
It should be noted that &g moles of the average particles, r, are identical with one mole
of the substance R, so that
pp=Zpxpd and pp = Ep X 1, (23)

The original m-component system can be divided into m sub-systems, in which
one original particle component (mth type) is substituted by the “average” type of
particle r, so that for the molar Gibbs free energy G, we have

m—1
Gp= 2. ;1(1’- Y; — Y, (24)
=1

where Y; = Xj—-X}"x X/ XR, Y,= X /XR. and g, =+ RT In a,.
Then from Eqgns. 13, and 20-24

Inag = & Y, X51In(a;/d%) (25)
j=1

the equation expressing the relations between the activity of the chemical substance
R and the activities of the particles. Eqn. 25 could be used for calculations in the case
of a known functien of g; = 4;(X}), which can be obtained from the models based on
the regular or ideal behaviour of particles.

Further, using Eqn. 14, the general correlations between the activity of the
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chemical individuals and the activity of the particle types, the following equations
are obtained.

,-; X?ln(a;/a}) = & ,-; X% In(a;/a%)
(26)

Y XFlna;,— AGE*/RT = & Y. X" 1n(a;/a%)
i=1 j=1

For disorder models, where the relationship in Eqn. 3 is assumed to be valid
for every particle type, the following equation can be written

aid} = X,/ X @
Then Eqn. 25 becomes

Inag = Y, X%In(X;/X%) (23)
=1

The last equation after the substitution of X; as a function of composition X},
as it appears from the disorder model, permits us to express the activity ap (using
values of X7) in the whole composition range in which the validity of the disorder
model is assumed.

DISCUSSION

As a first point of the discussion, the comparison of the relationships used in
the literature with those derived in the present paper, is attempted. As seen from the
above derivation, one can consider the composition R, on the perifery of a homo-
geneous region, to be identical with one of the pure chemical individuals which form
the end members of a solid solution series. Then, it can easily be seen that the expres-
sions for the calculation of the activities of Co;0,4, Mn3;0O, and Fe,;O, used in the
literature*-> (see Introduction), correspond to Eqn. 28 for the applied assumptions of
cation distribution in the pure substances. For example, if the pure Mn,O, is chosen
as a reference substance, with the cation distribution assumed to be strictly normal
(i.e., [Mni¥]=1; [Mn3*]1=2), and considering the relation between particle molar
fractions, X; and number of particles per spinel formula, [J] =7 X;, the relationship

Ayny0, = [MD3*1- Mg /4 (29)

is easily obtained from Eqn. 28.

It must be pointed out, that Eqn. (28) was only derived for the one reference
substance in the system. In the Driessens treatment, there are two reference substances
Mn;0,; and Co30,, for the system used. In the case of the simple model, neglecting
the existence of vacancies and interstitials, the same value of a@c,,0, is obtained through

ACoy04 = [COi—] . [C°B+]2/ 1 G0
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as by expressing a@y,,0, by Eqn. (29) and then integrating according to the Gibbs—
Duhem equation

AMn 304

In 4Co,0, = |. (X mny0. {1 — Xygn0)) dIn ay, 0, (3D

. m530‘=0

However, when the model involves e.g., vacancies, the concentration
different in pure Co;0, than in pure Mn,0,, the value X} for the vacancies is
ambiguous. So the activity of Co;0O, obtained through a method similar to that
using Eqn. 30, is different from that obtained using Eqn. 31 through an equation
similar to Eqn. 29.

A more serious mistake would occur 1o the case of Fe;O0;—ZnFe,O; solid

solutions if the activity of ZnFeO, was calculated by means of

Az4Fe;04 = [Zni"'] -[F es ] %4

starting from a strictly normal cation distribution in zinc ferrite, and (at the same
time) the activity of magnetite, Fe; O, was calculated from the expression

Afey0, = [Fer*1- [Fe ]'[Feg"']

based on a strict inverse cation distribution in pure magnetite. For the activities
calculated by this way, the Gibbs-Duhem equation is invalid.

Therefore, the activity of only one chemical component couid generally be
calculated directly from a disorder model using Eqn. (28). The activity of the second
component in binary systems must then be calculated by means of the Gibbs—Duhem
equation only.

Similarly in ternary systems, if one component is chosen as a reference sub-
stance, the Schuhmann’s integration procedure® derived from the Gibbs-Duhem

of which are
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Fig. 2. The concentration dependence of the activity of Ao ..Bo ¢ and A,B;, as the intermediate
member of ideal (Raoult’s) solutions A-B.
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equation for ternary systems, must be used for the evaluation of the activity of the
remaining two components.

When available information about the cation distribution exists for any com-
position inside the solid solution range. it is preferable to choose this intermediate
composition as the reference substance for the system. The concentration dependence
of the activity ag can then be calculated from the model using Eqn. 28.

The concentration dependence of ag, in the case of an ideal solid solution
consisting of particles A and B only, and with the composition A, ;Bg ¢, chosen as
reference substance, is represented in Fig. 2). Evaluation of the activity of chemical
components from ag is than based on the Gibbs-Duhem equation, and on the relation-
ship given by Eqn. 14.

For a general binary system A-B, the activity a,, in the sub-system A-R, can
be calculated by the integration of an adequate Gibbs—Duhem equation

Y,dina,+ Yrdinag=0 (32)
Substituting Y, and Yy from Eqn. 12, the integration
Xa
Ina, = f [(1 — XD/(Xa — XD] dlIn ag (33)
XA= 1

leads to the value of a,. The activity ag in the sub-system can be calculated from the
values of ag and a, using Eqn. 14, i.e.

XRlnag = G¥*— Xjlna, +Inag (L))

(The reverse procedure, ie., ag from the Gibbs-Duhem equation, and a, from
Eqn. 14, is then used in the sub-system R-B).

For a ternary system A—B-C the Schuhmann integrations related to sub-systems,
mentioned above. can be used. In the sub-system A-R-B, the activities, a4 and ag,
are calculated from

B In3r N
Ina, = Ina, — Pasdln ay
= _{Ya/Yp=constant
InaR
— In ax -
lnag = Inay — Pea dln ag
| _IYA/Yg=constant
icap

where the superscript s indicates the quantities at the starting point of the integration
path, and p,5, psa mean the ratios of the distances formed by the intersecting of the
A-R and B-R lines, respectively, by the tangent line of the curve, gz = constant, at
the point of the integration path (see Fig. 3). The activity ac for this sub-system is
then calculated from Eqn. 14.

It should be noted that, if the activity ag is known from the model as an explicit
function of composition, the analytical integrating, instead of the graphical one,
could be used.
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Fig. 3. Theillustration for Schuhmann’s procedure for a ternary system. 7 is the tangent line of the
isoactivity curve (g = constant) at the point P; pyp and pga (see text) are the ratios of the distances
TAA/RT, and TgB/RTy, respectively.
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