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A-CT 

Assuming the validity of the law of mass action for particles, the relationships 
for the calculation of the activities of chemical individuals from the concentration of 
particles in a homogeneous system, are derived using the transformation of baricentric 
coordinates. These relationships can be applied to general disorder modeIs, and they 
can serve fcr the selection of the correct and optimum methods for the comparison 
between disorder models and experimental data. Possible methods of application to 
binary and ternary systems are discussed. 

IXiRODUCTION 

The disorder models (Fehlordungsmodellen) are, for the most part, derived 
under the assumption that the concentrations of the partic!es obey the law of mass 
action. According to this law the constancy of the product, K& in the equation 

k-t = fl X-y = constant (1) 
j.L 

where Xj is the concentration, and vj is the stoichiometric coefficient of thejth type 
of particle (negative for “starting” particles), ought to be fulfilled for the reaction [L] 

n vi.J = 0 WI 

between tkz different t_ypes of particIe: J, for the system in equilibrium at a given 
temperature. 

From the definition of the activity particIe Q~, of the jth type of the constancy 
of the activity product results 

(2) 

Considering this fact, there is a parallei validity of the relationship between concen-. 
tration and activity for every type of particle in the system, i.e. 

ajfXj = constant (3) 

which is a sufficient condition for the validity of Eqn. 1. 
As it is known from the statistical treatment, Eqn. 3 is valid for the following 

particular cases (where Xj means molar fraction): (i) the concentration of particles is 
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near to zero (Hem-y’s law); (ii) the pair interactions of particles are compensated* 
(RaouIt’s law); and (iii) for ionic substances, the pair interactions between ions of the 
same sign of charge are compensated (T&nkin2). 

Although the more general and more precise statistical models do better justice 
to the real behaviour of substances, the apphcation of disorder models as the first 
step of a quasi-chemical approach, is stiII important. Driessens3 has shown, after 
thorough compilation, that numerous solid solutions obey the law of mass action 
for particles. 

Driessens”, comparing the disorder model of solid solutions of Mn,O,-Co,O, 
with the literature data about the activities, has used the relationships aco30. = 
* [CO~~]-[CO~~]~ and a_wn30a = $~n~‘J -[Mni’12 (where the particIe type in 
square brackets, [J1, means the number of particles per one spinei formuIa A,B,_,O,), 
for the calculation of the activities of the chemicaI individuals Co,O, and Mn,O,, 
as based on the assumption of strictly normal cation distributions in both of the pure 
components. SchmaIzried and Treijakov’, among others, have calculated the activity 
of magnetite in Fe305-NiFe204 solid solutions, empIoying the correiation corre- 
sponding to the strictIy inverse distribution in pure magnetite, Le., aFe,04 = [FG’J. 
fFei+] -[Fez+] 

There arises the question of how to calcuIate the activity of chemical individuais when 
the more genera? assumptions are used. It can be seen from the available literature, 
that reIations for the calculations of the activity of chemical individuals from particle 
concentrations, are performed only for the particular cases, but no general approach 
is reported. The establishing of more general relations is the aim of the present paper. 

txPEEuMENiAL _4xD REsuL-rs 

Homogeneous systems z&h chemical inditliduak as components 
The Gibbs Free ener_gy of an n-component homogeneous system, in equilibrium, 

at constant temperature (7’) and pressure (P), is given by 

(4) 

where I.+ =(~G~~nf)r.P.nrc~,=c~**~* is the chemical potential, and ni is the mole 
number of the ith component (chemical individual). When the total number of moles 

n = 2 ni and the mole fraction of the ith component Xi =nJn, then the integral 
i=l 

molar Gibbs free energy G, is given by 

The chemical potential I is commonIy separated into two terms, i.e. 

jli=~(iO+RTiIl cli (6) 

* c-g-, for the sytem constituted from two sorts of particles A and B. compensation occurs if the 
reIation ~E~~-z~-E=~ = 0 is wIidl. 
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The first term, pip, is called the standard chemical potential, and is equal to the moIar 
Gibbs free ener_q of the pure ith component; it is independent of composition. The 
second term includes the activity as a function of the molar fractions Xi- Then from 
Eqns. 5 and 6 

n 

G, = C Xi(pp i RT In ai) 
i=l 

(7) 

The integral Gibbs free ener_q of mixing is defined as 

A@’ 
= RT i Xzlnai 

i=l 

On considering point R of the homogeneous region of the system which 
corresponds to the composition expressed by the molar fractions X,?, then the Gibbs 

(8) 

free energy of mixing at this point is given by 

AGE’= = 
i=l 

(9) 

where a: are the activities of the components at the composition point R. 
A system of this composition represents a pure chemical substance R, which 

need not be a chemical individual in the ordinary sense. It is not erroneous to deter- 
mine the molar Gibbs free energy at the point R as the standard chemical potential 
of substance R, Le. 

Gz= f: pP~:+~~2 Xph-i$=& (10) 
i=l i=l 

In addition, the original zz-component system can be divided into n sub-systems, in 
which one of the original components is always substituted by the new component, 
the chemical substance R. Then for a sub-system, where the ntb component is substi- 
tuted, we have 

II-1 

G, = C f%Yi-_RYR 
i= 1 

(11) 

where Yz and Ya are the molar fractions corresponding to the new choice of compo- 
nents. According to the transformation of baricentric coordinates, it can be found 
that 

Yz = Xi - XF X XJX: and YR = X JX”, (12) 

The chemicai potential of substance R, pa can be introduced symmetrically to Eqn. 6 

PR =&+XTln aR (13) 

using the quantity a& which can be called the activity of the substance R. From 
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Eqns. 9-13, the following relations are obtained 

(14) 

In aR = AGEixj’RT - i X-F In ai 
i=I 

f f 
! I 

A P 

X8 X B 

0 xe - 1 

Fig. 1. The geometrical representation of the relationship between Gibbs free cner_q of mixing and 
the activity of components (~7~ and aa). and the activity (nR) of the intermediate member of the soIid 
solutions A-B. 

The geometrical representation of the relationships betwee:: a,, ai, A’,, Xi) 

A Gir, A Gix in the binary system is given in Fig. I_ 

Honrogeneous s_rsrems rrith particles as components 

Considering the same homogeneous system as above in equilibrium, but with 
particks as components, the number of particle types, m, is usually greater than II. 
The Gibbs free energy of the system is given by 

where Ni is the mole number and ,ri = (~G~~Nj)T,P..~~+,=c~~~~=“~ is the chemical 
potential of thejth type of particle. 

The total mole number AT and the molar fractions Xi are then, respectively, 
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and the molar Gibbs free ener_ey (;, introduced by Eqn. 5 is given by 

G, = Gin = < x G/Iv = 2 &Xj 
j=l 

where 5 = hi/n 

(17) 

(18) 

w9 

so that 

G,= t Xj(&fRTlnai) (20) 
j=l 

For the point R of the system 

is obtained, where CR means the ratio of the total mole number of particles at the 
point R to the total mole number of chemical individuals at the same point. 

We now introduce “average” particles r: one mole of which is identiea1 with 
a mixture of m sorts of particlesj, in amounts corresponding to the moIar fractions 
A!;, and with a standard chemical potential of 

(22) 

It should be noted that & moles of the average particles, r, are identical with one moIe 
of the substance R, so that 

&= &xp,O andpR= &x,ur (23) 

The original nr-component system can be divided into m sub-systems, in which 
one original particIe component (mth type) is substituted by the “average” type of 
particle r, so that for the molar Gibbs free energy G, we have 

m-l 

where Yi= Xj-qx X,fXf, Y,= X,/X:. and ~~,=p~+-RTIn a,. 

Then from Eqns. 13, and 20-24 

In aR = CR 5 X; ln(ajiJj) 
j=l 

(25) 

the equation expressing the relations between the activity of the chemical substance 
R and the activities of the particles. Eqn. 25 could be used for calculations in the case 
of a known functicn of + = aj(Xi), which can be obtained from the models based on 
the reguiar or ideal behaviour of particles. 

Further, using Eqn. 14, the general correlations between the activity of the 
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chemica1 individuals and the activity of the particle types, the folIowing equations 
are obtained_ 

_ f Xs In (li - AG~‘*/:/RT = & g XR ln(a,-/aq) 
i=: j=l 

For disorder models, where the relationship in Eqn. 3 is assumed to be valid 
for every particle type, the folIowing equation can be written 

Then Eqn_ 25 becomes 

In aR = 5 X7 In(XjjXp) 
j=1 

cw 

The last equation after the substitution of Xj as a function of composition Xi, 
as it appears from the disorder mode4 permits us to express the activity aR (using 
values of Xi”, in the whoIe composition range in which the validity of the disorder 
model is assumed. 

DI!KI_JSSION 

As a first point of the discussion, the comparison of the reIationships used in 
the literature with those derived in the present paper, is attempted. As seen from the 
above derivation, one can consider the composition R, on the perifery of a homo- 
geneous region, to be identical with one of the pure chemical individuals which form 
the end members of a solid solution series. Then, it can easily be seen that the expres- 
sions for the calculation of the activities of Co104, Mn,O, and Fe30, used in the 
Iiterature4.’ (see Introduction), correspond to Eqn. 28 for the appIied assumptions of . 
cation distribution in the pure substances_ For exampie, if the pure Mn,O, is chosen 
as a reference substance, with the cation distribution assumed to be strictly norma 
(Le., [Mnz’] = 1; [Mnif] = 2), and considering the reIation between particIe moIar 
fractions, Xi and number of particles per spine1 formuia, [JJ = 7 Xi, the relationship 

aMrJo4 = [Mnii] - [Mnz*]2/4 (29) 

is easiIy ob’kned from Eqn. 28. 
It must be pointed out, that Eqn. (28) was only derived for the one reference 

substance in the system. In the Driessens treatment, there are two reference substances 
Mn,O, and Coj04, for the system used. In the case of the simple model, neglecting 
the existence of vacancies and inter&i&, the same value of ati,o4 is obtained through 

uc0,04 = [co:‘] - [co;+]‘/4 (30) 
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as by expressing aAun,Oa by Eqn. (29) and then integrating according to the Gibbs- 
Duhem equation 

However, when the model invoives e-g., vacancies, the concentration of which are 
different in pure Co,O, than in pure Mn,O,. the vaIue XT for the vacancies is 
ambiguous. So the activity of Co,O, obtained through a method similar to that 
using Eqn. 30, is different from that obtained using Eqn. 31 through an equation 
similar to Eqn. 29. 

A more serious mistake would occur in the case of Fe,OJ-ZnFezO, solid 
solutions if the activity of ZnFeO, was calculated by means of 

aZnFcz04 = [Zn:*] - [Fez ‘]“I4 

starting from a strictly normal cation distribution in zinc ferrite, and (at the same 
time) the activity of magnetite, FesOj, was calculated from the expression 

based on a strict inverse cation distribution in pure magnetite. For the activities 
calculated by this way, the Gibbs-Duhem equation is invalid. 

Therefore, the activity of only one chemical component could generaiiy be 
calculated directly from a disorder model using Eqn. (28). The activity of the second 
component in binary systems must then be calcuIated by means of the Gibbs-Duhem 
equation 0nIy. 

SimilarIy in ternary systems, if one component is chosen as a reference sub- 
stance, the Schuhmann’s integration procedure6 derived from the Gibbs-Duhem 

Fig. 2. The concentration dependence of the activity of &_4B0_6 and A2B3, as the intermediate 
member of idea1 (Raoult’s) solutions A-R. 
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equation for ternary systems, must be used for the evaluation of the activity of the 
remaining two components. 

When avaiIabIe information about the cation distribution exists for any com- 
position inside the solid solution range. it is preferabIe to choose this intermediate 
composition as the reference substance for the system. The concentration dependence 
of the activity a, can then be calcuiated from the mode1 using Eqn. 28_ 

The concentration dependence of a,, in the case of an ideal solid solution 
consisting of particles A and B only, and with the composition P_o_sB,_6, chosen as 
reference substance, is represented in Fig. 2)_ Evaluation of the activity of chemical 
components from a, is than based on the Gibbs-Duhem equation, and on the relation- 
ship given by Eqn. 14. 

For a general binary system A-B, the activity a,, in the sub-system A-R, can 
be caIcuIated by the inte_mtion of an adequate Gibbs-Duhem equation 

(32) 

Substituting Y, and YR from Eqn, 12, the integration 

lna, = 
f 

II= I CU - XJl(-G - X31 an =R (33) 

Ieads to the vaIue of c*. The activity a, in the sub-system can be calculated from the 
values of a, and a, using Eqn. 14, Le. 

XElna,= Gg”-X~Ina,+lna, 

(The reverse procedure, i-e_. a, from the Gibbs-Duhem equation, and aA from 
Eqn_ 14, is then used in the sub-system R-B). 

For a ternary system A-B-C the Schuhmann integrations related to sub-systems, 
mentioned above, can be used. Tn the sub-system A-R-B, the activities, QA and ag, 
are calcuiated from 

In 3R 
ln a,, = ln ai- 

f 
Pm din =R 1 Y~Y’a=conscsnc 

Ina, 

where the superscript s indicates the quantities at the starting point of the integration 

path, and PAB, PBA mean the ratios of the distances formed by the intersecting of the 
A-R and B-R lines, respectiveIy, by the tangent line of the curve, aR = constant, at 
the point of the integration path (see FI,. -0 3). The activity a, for this sub-system is 
then caIcuIated from Eqn. 14. 

It should be noted that, if the activity aR is known from the model as an explicit 
function of composition, the anaIytica1 integrating, instead of the graphical one, 
could be used. 
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Fig. 3. The illustration for Schuhmann’s procedure for a ternary system. t is the tangent line of the 
isoactivity curve (cn = constant) at the point P; p *n and pB,, (see text) are tke ratios of the distances 
T,&RT, and T,B/RT,. respectively. 
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