DIFFERENTIAL THERMAL ANALYSIS OF AMMONIUM TETRAFLUOROBORATE AND HEXAMMINONICKEL-AND TETRAMMINOZINC-TETRAFLUOROBORATE*

R. T. MARANO and JAMES L. MCATEE JR. Baylor Unicersity, Waco, Texas 76703 (U. S. A.) (Received March 15th, 1972)

ABSTRACT

Differential thermal analysis (DTA) has been used to investigate the thermal decomposition of NH_4BF_4 , $Ni(NH_3)_6(BF_4)_2$ and $Zn(NH_3)_4(BF_4)_2$ over a temperature range of 25–500 °C and heating rates of 5, 10 and 25 °C min⁻¹. The DTA patterns show the effects of dehydration, desorption, dissociation, vaporization, and in one case, NH_4BF_4 , solid-solid transition. An evaluation of change in furnace atmosphere and heating rate are also reported.

INTRODUCTION

This work is part of a continuing study of tetrafluoroborates¹⁻⁴. It was shown previously that sharp, reversable endothermic peaks were observed at the rhombic-to-cubic transition temperature of the alkali metal tetrafluoroborates, while later it was found that calcium, cobalt, copper and nickel tetrafluoroborate do not undergo such solid-solid transition in the temperature range of 25-500 °C.

EXPERIMENTAL PROCEDURE

This study was performed using a commercial differential thermal analysis system manufactured by Fisher Scientific Company. The instrumental layout and the general analytical method have been given previously¹⁻⁴. Materials used for this investigation were purchased from Alfa Inorganics and were 99% + pure based on boron analysis. The compounds were ground to 100–200 mesh just prior to use and were used without any prior drying.

RESULTS

In the DTA scans, made at 5°C min⁻¹ and under a flowing argon atmosphere, shown in Fig. 1, the rhombic to cubic transition $(S_1 \rightarrow S_2)$ for NH₄BF₄ occurred at

^{*}Presented before the Third Annual Meeting of the North American Thermal Analysis Society in Waco, Texas, on February 7–8, 1972.

189 °C and the BF₃ liberation appeared at 400 °C. For the Ni(NH₃)₆(BF₄)₂ and Zn(NH₃)₄(BF₄)₂ there were no $S_1 \rightarrow S_2$ transitions noted. The peaks between 286 °C and 362 °C for Ni(NH₃)₆(BF₄)₂ and 370 °C and 393 °C for Zn(NH₃)₄(BF₄)₂ were believed due to the dissociation and liberation of NH₃. Finally for Ni(NH₃)₆(BF₄)₂ the BF₃ was liberated at 398 °C and for Zn(NH₃)₄(BF₄)₂ the BF₃ was liberated at 403 °C.

Fig. 1. DTA curves recorded at a heating rate of 5 °C min⁻¹ in argon.

Fig. 2. DTA curves recorded at a heating rate of 5° C min⁻¹ in static air.

With static air (Fig. 2) there was an increase in the $S_1 \rightarrow S_2$ transition temperature of NH₄BF₄ to 194°C, while the BF₃ liberation was at 403°C. The Ni(NH₃)₆(BF₄)₂

Fig. 3. DTA curves recorded at a heating rate of 10° C min⁻¹ in argon. Fig. 4. DTA curves recorded at a heating rate of 10° C min⁻¹ in static air.

422

and the $Zn(NH_3)_4(BF_4)_2$ gave no $S_1 \rightarrow S_2$ transitions under these conditions. The peaks between 225°C and 320°C for Ni(NH₃)₆(BF₄)₂ and between 330°C and 372°C were believed due to the liberation of NH₃ while the peaks at 385°C and 396°C, respectively, were due to the liberation of BF₃.

The DTA curves made at 10° C min⁻¹ (Figs. 3 and 4) showed little if any change in the general shape and position of the peaks. The runs made with flowing argon on NH₄BF₄ had the $S_1 \rightarrow S_2$ transition at 190°C and the liberation of BF₃ at 414°C and 420°C. Again there was no $S_1 \rightarrow S_2$ transition for either Ni(NH₃)₆(BF₄)₂ or Zn(NH₃)₄(BF₄)₂. The liberation of NH₃ for Ni(NH₃)₆(BF₄)₂ appeared as a series of peaks starting at 285°C and ending at 360°C, while the Zn(NH₃)₄(BF₄)₂ liberated its NH₃ as a series of peaks beginning at 365°C and ending at 394°C. The BF₃ was evolved at 390°C for Ni(NH₃)₆(BF₄)₂ and at 405°C for the Zn(NH₃)₄(BF₄)₂.

With static air and 10°C min⁻¹ for NH₄BF₄ the $S_1 \rightarrow S_2$ transition appeared at 190°C and the BF₃ evolved at 389-414°C. NH₃ was evolved at 293°C to 375°C and the BF₃ at 392°C for Ni(NH₃)₆(BF₄)₂ while for Zn(NH₃)₄(BF₄)₂ the NH₃ was evolved over a range from 347°C to 408°C with the BF₃ liberated at 414°C. As before, the metal salts did not exhibit a $S_1 \rightarrow S_2$ transition.

Fig. 5. DTA curves recorded at a heating rate of 25°C min⁻¹ in argon. Fig. 6. DTA curves recorded at in heating rate of 25°C min⁻¹ in static air.

Finally the DTA curves shown in Figs. 5 and 6 were run at 25° C min⁻¹ with static air and flowing argon respectively. With flowing argon, the $S_1 \rightarrow S_2$ transition of NH₄BF₄ appeared at a temperature of 185°C while the evolution of BF₃ appeared at range 387-390°C. As before no $S_1 \rightarrow S_2$ transition was seen for either the Ni(NH₃)₆(BF₄)₂ or Zn(NH₃)₄(BF₄)₂ but the liberation of NH₃ was clearly indicated at 270-365°C for the nickel salt and 295-395°C for the zinc salt. The BF₃ was evolved at a temperature of 390°C for the Ni(NH₃)₆(BF₄)₂ and 400°C for the Zn(NH₃)₄(BF₄)₂.

Thermochim. Acta, 4 (1972)

In the runs made in static air at 25 °C min⁻¹, the NH₄BF₄ $S_1 \rightarrow S_2$ transition appeared at 190 °C and the BF₃ was evolved at 397 °C. The Ni(NH₃)₅(BF₄)₂ evolved NH₃ between 295 °C and 375 °C, with BF₃ evolution at 400 °C. Lastly, the Zn(NH₃)₄-(BF₄)₂ evolved NH₃ between 295 °C and 395 °C with the BF₃ being liberated at 400 °C.

DISCUSSION

As has been noted that the NH_4BF_4 of this series has the rhombic to cubic $S_1 \rightarrow S_2$ transition and it was found to take place at $189 \pm 5^{\circ}C$. The liberation of the NH_3 from the $Ni(NH_3)_6(BF_4)_2$ and from the $Zn(NH_3)_4(BF_4)_2$ was found to take place over a range from $270^{\circ}C$ to $395^{\circ}C$ with not much variance in the onset peak or intermediate peaks with regard to the conditions of obtaining the DTA data.

The liberation of BF_3 in all three samples occurred over a range from 385 °C to 420 °C, and when a flowing-argon atmosphere was used, there was an exotherm before the endotherm which was not apparent in the static air runs.

As seen from the DTA curves, the type of atmosphere had little, if any, effect on the $S_1 \rightarrow S_2$ transition.

In all cases the nickel salt liberated NH_3 at a lower temperature than the zinc salt, and liberated BF_3 at a lower temperature. The exact cause for this is yet unknown but is most likely related to differences in bond strength and/or type of coordination that occurs between the metal and the BF_4 ion.

ACKNOWLEDGEMENT

The authors wish to acknowledge the financial support of the Robert A. Welch Foundation, Houston, Texas.

REFERENCES

- 1 R. T. Marano and E. R. Shuster, in R. F. Schwenker and P. D. Garn (Eds.), Thermal Analysis, Academic Press, New York, 1 (1969) 709.
- 2 R. T. Marano and E. R. Shuster, Thermochim. Acta, 1 (1970) 521.
- 3 R. T. Marano and E. R. Shuster, in R. S. Porter and J. F. Johnson (Eds.), Analytical Calorimetry, Plenum Press, New York, 2 (1970) 281.
- 4 R. T. Marano and J. L. McAtee, Jr., Proc. 3rd ICTA, Davos, Switzerland 1971, in publication.