Thermochimica Acta, 6 (1973) 1-11 1
© Elsevier Scientific Publishing Company, Amsterdam — Printed in Belgium

EVALUATION OF HEATS OF TRANSITION IN
SCANNING CALORIMETRY

ROBERT N. GOLDBERG AND EDWARD J. PROSEN

Physical Chemistry Dicision, Institute for Materials Research, Natioral Burear of Standards,
Washington, D.C. 20234 (U. S. A))

(Received 17 August 1972)

ABSTRACT

A procedure for the evaluation of heats of iransition in scanning calorimetry
has been developed. A formula for evaluation of the energy of fusion of a compound
at its melting point is derived that takes into account the baseline shift that is attrib-~
utable to the heai capacity change on melting. Several other calorimeter parameters
of importance are discussed. These include heat exchange between calorimeter
vessel and jacket, the time constant of the instrument, ihe scanning rate, and the
heater placement.

I. INTRODUCTION

Thermal analysis devices of various designs and constructions have been
widely used for the determinaticn of heats of trarsition!~7. Although the accuracy
obtained in these devices has not as yet been as nigh as that obtained in carefuliy
constructed adiabatic calorimeters®, they generally do have the advantage of ease of
operation and they can yield rapid results on small amounts of material.

Recenily, this laboratory had the occasion to measure some heats of fusion
using a thermal analysis methc 1°. One ambiguity we encountered, however, was in
the treatment of the data—namely, in how to draw the baseline under the transition
peak. The common and customary practice has bzen simply to draw a straight line
under the peak’. However, if there was a baseline shift, there was an uncertainty as
to just how the baselinie should be drawn. A search of the literature indicated that this
problem had, with the exception of a few workers!®~!*, been ignored.

In an effort to solve this proble:n and to lay a theoretical foundation for this
type of calorimetry, we have developed a one-body model treatment for phase transi-
tion data obtained from scanning calorimetry. Our theory predicts that a correct
treatment of the experimental data involves an extrapolatior. of the baseline obtained
on completion of the transition and the application of a correction lerm involving
the scanning rate, the magnitude of the baseline shift, and the temperature difference
and heat conduction constant between the calorimeter vessel and its jacket.
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I. THE IDEALIZED HEAT CONDUCTIOXN CALORIMETER IN THE SCANNING MODE

The discussion and analysis of calorimetric methods frequently idealizes the
separation of the calorimeier proper into two regions: namely, the calorimeter vessel
or cell, within which the process of interest ozcurs, and the calorimeter surroundings
or jacket (see Fig. 1). The ratio of the heat capacity (C) of the ca orimeter cell and
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Fig. 1. One-body model of calorimeter where 4 is the heat conduction constant between calorimeter
cell and jacket.

contents to the heat conduction constant (h) between jacket and cell defines the time
constant (1) of the calorimeter. Heat conduction calorimeters are characterized by a
small time constant unlike adiabatic and isoperibol czlorimeters which geaerally
have larger time constants, aithough the distinction botween these various types of
calorimeters must also depend on the inode of operation of ihe instrum_at and on
which physical variables are kept constant'?. The theory and practice of adiabatic
and isoperibol calorimetry has been discussad elsewhere”-13:1% and in this paper we
shall be concerned ouly with heat conduction calorimeters. Lzter, we shall return to
a discussion of the importance of the time constant.

For purposes of this paper, we define a scanning calorimeter as a heat conduc-
ticn calorimeter, where the temperature of the jacket is changing with time. The
teraperature of the calorimeter cell may then either lag behind the temperature of the
jacket or may be made very nearly equal to it by means of an electrical heater con-
tained within the cell. Since accurate calorimetric measurements r=quire an accounting
for heat exchange between calorimeter cell and jacket, it is required that this heat
exchange be known or calculable. For conduction* or for r2diation heat exchange
across small temperature differences one can write

dQ/dt = h(0;—0,) = hAD ¢))

*Sers assumption 3, Sectior. I
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where dQ/ds Is the rate of heat exchange between calorimeter and jacket, 4 is the heat
conduction constant, and 6; and 8, are the temperatures of jacket and calorimeter
cell, respectively.

There are several possible arrangements and modes of operation of scanning
calorimeters. For example, one may measure the temperature difference between the
jacket and the calorimeter cell (e.g. by means of thermocouples), or one may just
measure the temperature of the cell itself, knowing the temperature of the jacket as
a function of time. One may have single cell or double ceil operation (differential
arrangement). One may also apply electrical heating to a cell to compensate for
endothermic effects. A summary of several possible types of scanning calorimeters

is given in Table 1.

TABLE 1
POSSIBLE ARRANGEMENTS AND MODES OF SCANNING CALORIMETERS

1. Single ceil
A, Measure (6,—8,) and &, as functicns of time.
1. No electrical compensation
2. Electrical compensation
B. Mecasure 6, and 6; as functions of time.
1. No electrical compensation
2. Electrical compensation

II. Double cell®
A. Measure [(6,—~8) —(6;—6.)] and 6, as functions of time.
1. No electrical compensation
2. Electrical compensation
B. Measure (. —8)) and 6, as fu.-ctions of time.
1. No electrical compensation
2. Electrical compensation

2 9. and @, are the {emperatures of the working and auxiliary cells, respectively
. A SIMPLE ONE-CELL CASE

We shalil proceed by working out a simple case—one in which the calorimeter
consists of a single cell in which one measures the temperature difference between
the jacket and the cell as well as the temperature of the jacket, both as functions of
time. We shall consider the cell to contain a known mass of a “ubstance that melts at
temperature 0. The energy of fusion of this mass of material at this temperature is
given by AUz ,4_.

In general, the heat capacity of the solid (C,) will not be equal to the heat
capacity of the liquid (C;}. No electrical energy is applied to the cell during the experi-
ment. We shall consider the cell to be a closed system made of rigid walls so that
there can be no exchange of matter with the surroundings or work done by the system
on the surroundings. The object of the experiment is to determine the epergy of fusion
at the melting temperature.
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We state the following assumptions:

The substance is pure and melts at a constant temperature and has negligible
vapor pressure.

The heat capacity of tke cell (C_) and the heat capacities of the liquid and solid
are constants, independent of temperature.

The heat exchange between cell znd iacke! is given by eqn. (1) where the heat
conduction constant (/) is known and is independent of temperature over the
range of the experiment. Implicit in cqn. (1) is the assumption that the heat
capac:tv of any material between jacket and calorimeter cell is negligible.

PR Gy S z

The temperature of the jacket is uniform at all iimes and changes linearly with
time
0; = 6;(0)+ =zt 7))

where 0;(0) is the value of 8; at time (¢) equal to zero, and z is the programming
or scanning rate of the jacket.
rhe temperature of the cell and its contents is uniform at all times.*

Afiter this simple case has been worked out, the other possible arrangement and modes
will be discussed. Finally, some of the possible consequences due to the above assump-
tions not holding will be considered.

-
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Temperature of calorimeter jacket (0,) and calorimeter cell (6 as functions of time for a

melting process. &, is the melting temperature; C;>C,.

In Figs. 2 and 3 are shown qualitative pictures of the data one would expect to

obtain for our simple case (IAl in Table 1). Initially, thc jacket and the cell with its
contents are at the same temperature, 8;(0) = 6.(0) at #=0. The temperature of thc

*The last three statements are one-body model assumptions®*. Clearly, it is impossible to build a
perfect one-body calorimeter.
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Fig. 3. Temperature difference (AG) between calorimeter jacket and cell as a function of time during a
melting experiment. A@; and A#, are the steady state temperature differences prior to and after
melting, respectively; 6 = A8, —AG,.

jacket is then increased at the rate z, according to eqn. (2). Since the heat flowing
from the jacket to the cell is given by eqn. (1) we can write

C,(dd.fdr) = h(6,—6,) = hA@ &)

where C, is the heat capacity of the cell and the solid samnle (the initia’ systeni).
We solve eqn. (3) for 8_ and A8 to obtain

0. = (0;(0)+ar) + “TC‘ (e FiCi_1) @
A§ =°‘TC*(1—e—WCx) )

After the exponentials in eqns. (4) and (5) have diesd out for large ¢, we find that
df./dr becoines equal to « and that

A8 = Af; = aC,/h =at ©)

The time during which A@; is a constant constitutes the fore period baseline. At
temperature 8, corresponding to time ¢, in Figs. 2 and 3, th= sample will start to
melt and the cell and its contents will remain at a constant temperature until the
melting process is complete. Then, the temperature of the cell will catch up rapidly
with the temperature cf the jacket until a new after period baseline is achieved where,
by reasoning similar to that given above, one can show that
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where C, is the heat capacity of the cell and the liquid sample (the final system).
Af, corresponds, like AQ,, to the temperature difference between the jacket and the
cell after the exponential term has become insignificant. In Figs. 2 and 3 the baseline
shift due to the change in heat capacity has been exaggerated. The magnitude of the
baseline shift is defined by the quantity 8, where

6=A40,—-A9, =—-(C,—C)). (38)

TR

At time ¢z, in Figs. 2 and 3 our calorinieter cell contains the pure solid at

temperature 8., = 0. This can be expressed as
6., =0,=06;(0)+xt; —AD; )

<

By time 7,, the melting process has been completed and we now have cell and liquid
sample at temperatura 8_,, which is given by

In eqns. (9) and (10), 6. and 8., are the temperatures of the cell at times 7; and 75,
respectively, while A@; and A@, are the temperature differences between jacket and
cell at these respective times. From the First Law of Thermodynamics, the total
quantity of heat (Q) that has entered the sample cell, given by eqn. (11)

0= ;:J © AOd: (11)

¢ .
is also equal to the change in internal energy for the process

cell(at 0_;) + solid(at 0.,) — cell(at 8_,) +liquid(at 0_,). (A)
But (A) may be treated as the sum of the two step process

solid(at 0_,) — liquid(at 0_,) (B)
cell(at §.y) +liquid(at 0.,) — cell(at 6.,) + liquid(at 0.,). ©
One may then deduce that
0=h . AQdt = AUgs_+(Ci+C.) (8.2 —0.y). (12)
Jo

Eliminating the last term in eqn. (12) by means of eqns. (7), (9), (10), and the previous
definition of the term J, we obtain an expression for AUy ,_ in terms of experimentally
measureable quariities, namely

AUy, =h U AGdI—AG, (1 —1,) + (‘ﬁ) 5]. (13)
o

I
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Equation (13) is a “prescription” for determining the energy of fusion of a
pure compound for our simple case and within the context of the assumptions given
above. Geometrically, the first two terms in the brackets of eqn. (13) represent the
area abc minus the area of the triangle acd shown in Fig. 4. To this resultant area
must be addea the term (A0,/x) 5. The sum of these terms is then multiplied by the
heat conduction constant A.

S8 s

Time

Fig. 4. Temperature difference between jacket and vessel as a function of time during a melting
process using the single-cell mode of operation. The relevant areas that must be measured tce obtain
the energy of fusion (AUre_) at the melting point are indicated on the figure.

AUy, = h(area-abc—area-acd+ (A0:[x) ).

We note that the choice of the time 7, is immaterial provided that it is any
time on the new baseline established after completion of the mciting. However, the
choice of the time #; is seen to be of consequence.

Physically, the last term in eqn. (13) multiplied by 4 is equal to (C;+C.)é and
corresponds to the quantity of heat required to raise the temperature of the cell and
liquic sample over the temperature interval 3.

The assigned temperature of transition is 8_,, given by eqgn. {9).

Our treatmeni confirms thzt if there is no heat capacity change on melting, 6 is
equal to zero, and the correct area tc be used in the calcuiation is the area above the
baseline and under the peak due to the transition. in such a case, the heat of fusior is
independent of temperature and the choice of ¢, and #,.

The extension of our treatment to the experimental situation where 0, aud 6;
are measured as functions of time (case IB1 in Table 1) is trivial in that if one knows
both these quantities as functions of time, this information can be combined to yield
A0 as a function of time, namely, :

6. =£(® (14)
Al = 6;(0)+at—£(?) (15)
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The treatment of these datz is then identical to that given in Section III above. If
electrical compensation is used (case IB2) the treatment of the data would be as given
in Section 1V.

¥V. CASE OF ELECTIRICAL COMPENSATION

Case IA2 in Table 1 differs from the case just considered in that now electrical
power, P(f), is being provided by a heater contained within the cell. We will assume
that the power is known accurately as a function of time and that proper accounting
Iias been made for power generated in the heater leads'®. If electrical heating is used
only between the times 7, and 1, (sec Fig. 3), the energy of fusion will then be given by

AUg, =h [ ' CA@dt—AO,(t,—1,) + (Afz) 5] + ’ " P(t)dt. (16)
Lo fx o2

Since electrical compensation is being provided, the magnitude of the ‘. Afdr term

£x
in egn. (16) will be smauiier than the same term in egn. (13) where no compensation

was provided. The principal advantage of electrical compensation is that electrical
power can be measured very accuratelv and precisely when proper care is taken.

When total electrica! compensat.on is attempted, one must demonstrate that
the sum of the negative and positive heat exchange between calorimeter cell and
Jacket is negligible.

V. DOUBLE CELL OPERATION

In double cell, or differential operation, we have a “twin” cell contained within
the jacket. Although the heat capacity (C’) and the heat conduction constant (k") of
the twin are approximately equal to that of the working cell, it does not contain a
rnaterial that will undergo a thermal transition. It is evident that all of the equations
developed earlier will apply to the twin cell. Thus, after the decay of aninitial exponen-
tial term (egn. 5), the temperature difference between the twin cell and jacket will be

2C’
h

AY = (17)

If one measures the quantity (A0 —A@8"), .orcesponding to case IIA1 in Table 1, one

viould obtain data of the sort shown in Fig. . The energy of fusion at temperature
€., would be given by eqn. (13) which is (by reference to Figs. 4 and 5) equivalent to

AUgy_=h [area—abc —area-acd + ( AD;) 5_| . (18)

- a rd

The quantity o and the areas abc and acd are known from the data in Fig. 5, but the
value of AQ, is pot. We, therefore, conclude that double cell operation is feasible
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provided that the quantity Af, (or Af,) is also measured, as in the single-cell mode
of operation.

4 .
T (28-28"
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Time

Fig. 5. Plot of (A@—AG8’), the differential temperature difference, as a function of time for 2 melting
process utilizing differential operation. In this experiment, the quantity é and the areas abc and acd
are mecasured, but the valuc of A@; must be obtaincd by a separate measurement.

If electrical compensation is applied to the working cell, eqn. (16) would then
be applicable. Again, the quantity A8, must be measured.

If the difference in temperature of the individual cells 0.— 6., is measured
(cases IIB1 and 11B2), this is equivalent to measuring the quantity A6 — Af’ under our
assumption of uniform jacket temperature. The treatment of the data would then
follow the prescription given above.

The only reason for using differential operatioa would be to cancel out curvature
in the baseline due to non-linear temperature programming of the jacket. Otherwise,
differential operation should not be necessary.

VI. THE REAL SCANNING CALORIMETER

The treatment given above is based upon the assumptions stated in Section IIl.
The real calorimeter, however, presents a much more complicated and difficult
problem, and it is not the purpose of this paper to present a complete and rigorous
solution for this problem. Nevertheless, we shall discuss in a qualitative way some of
the consequences due to departures from the assumptions made earlier.

If the compound contained within the calorimeter has a vapor pressure, a
correction to the measured energy of fusion can be applied using the procedure derived
by Hoge!®. A correction of this sort becomes necessary only in the case of highly
accurate work or when the compound has a large vapor pressure. High accuracy work
would also necessitate a correction for any impurities contained within the sample.

There are several effects that can make eqn. (3) non-linear. These effects are
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due to temperature dependencies of (1) the heat capacity of the calorimeter cell, (2)
the heat conduction constant (#), and (3) the heat capacity of the sampie itseif. It is
cur belief that there are experimental remedies available taat will help to minimize
these difficulties although not entirely eliminate them. For example, if one provides
electrical compensation during a melting experiment (see Section IV), the correction
for heat exchange to the jacket is smaller and hence any temperature dependence of
h becomss less important. it should also be possible to insure that the heat capacity of
tine calorimeter cell is rea ;onably constant over a small temperature range. Differential
operation and a slow scanning rate should also help to minimize the above non-linear
effects as well as nea-linear temperature programiming of the jacket. We note that if a
transition occurs o ’er a wide temperature range, as is frequently the case with protein
denaturations3, a very slow scanning rate may not be feasible.

If the equation “or heat exchange between cell and jacket were by some chance
different than eqn. (1). one would then have to modify all of the equations in the
subsequent treatment. The difficulties and dangers inherent in a procedure of this sort
can be avoided experirientally by (1) design of a calorimeter in such 2 way that most
of the heat exchange 1; by conduction and (2) operation of the instrument in such a
viay that the temperature difference between jacket and cell is never excessively large.

As stated earlier. one cannot build a perfect one-body calorimeter. Gradients
will always exist on the jacket and on and within the calorimeter ceil. These gradients
can be minimized, howz2ver, by means of vanes and by the use of maierials having a
high thermal diffusivity. We also note that all calorimetric measurements are com-
parison measurements Detween a krown and an unknown quantity of heat and that
meaningful calorimetric measurements can be made if the gradients on the surface
of the calorimeter cell are the same for both the known and unknown heats. A test
that has been proposed!” to check the accuracy of calorimetric measurements is that
of heater plzcement. To perform this test, one moves the heater about within the
calorimeter cell and determines the effects of these operations on the experimental
resuits. In an accurate calorimeter, heater placement should make little or no
difference.

An additional effect of lags in the calorimeter would be to distort the shape of
the scanning curve from that predicted by the one-body model. Thus, one should
expect to find a rounded curve rather than a curve of the type depicted in Fig. 4
which demonstrates abrupt changes corresponding to the onset and end of melting.

Equation (13) was derived, in part, in order to be able to account for the
baseline shift encountered in scanning calorimetry. Recently, Guttman and Flynn!8,
have developed a treatiment specifically for the type of scanning calorimeter developed
by Watson er al.?. It is hoped that as scanning calorimetry becomes more accurate
treatments of this sort will come intc wider usage.

Earlier in this paper it was stated that the time constant was an important
characteristic of the calorimeter. It is our contention that, for heat conduction calori-
metry, it is desirable to have a small time constant. The reason for this lies in the
fact that the experiment is not comr pleted until the curve has reached the after-period
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baseline. For example, if we have a calorimeter with a time constant of 100 seconds,
a peak on its decay to the baseline will fall to half of its value in 69 seconds. If we
consider the curve to have returned to its baseline when it has fallen to one one-
thousandth o: its maximum value, we calculate that we must wait approximately ten
half-times fo1 this to happen, which in the case of our example corresponds to 690
seconds. We reel that a time constant of about this order of magnitude probably
constitutes a practical upper limit for scanning calorimetry. If it is exceeded, not only
does one lose the advantage of speed, but if one wishes to measure small heat effects,
one must contend with the variety of thermal disturbances that can occur during this
long wait for a return to baseline.
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