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An earIier numerical analysis showed that the second approximate method of 
Horotitz and Metzger can be rendered exceedingly accurate for reduction of thermo- 
gravimetry data. It is demonstrated here that this result can be justified on the basis 
of an asymptotic expansion with a nondimensional activation energy as the large 
parameter_ The order of magnitude of the error is ascertained for this and two other 
approximate methods_ Higher-order terms in the approximation are developed_ 

IhlRODUCTION 

The usefulness of thermogravimetry (TG) for studying pyrolysis of solids 

prompted investigations of approximate graphical methods that are suitable for 

accurate and efficient data reduction I-’ For a single-reaction, first-order, Arrhenius . 

process in a sample whose temperature is programmed to increase linearly with time, 

a detailed numerical comparison3 illustrated the reIative accuracy of three such 
methods, but the underlying reasons for this relative ranking remained unckar. 

As are many other processes in reactin, Q systems, TG tests are characterized 

by large values of the nondimensional activation ener_q, Z, which is defined by 
z = E./RT, where E is the activation ener_gy, R is +che universal gas constant, and T is a 
representative temperature attained by the system during the process. Typical values 
of this parameter for TG range from 25 to 100; they rarely fall appreciably below 10. 
Recent developments in asymptotic analysis4, when applied to chemically reacting 
systems5*6, enabIe one to extract asymptotic expansions that are valid in the limit of 
large nondimensional activation energies. It is the purpose of the preser.t communica- 

tion to develop such an asymptotic expansion for the TG curve of weight loss as a 

function of temperature. The asymptotic expansion will be employed as a basis for 
comparing the three approximate methods identified previously. In addition, higher- 
order terms will be given. 
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Although the general approach can be applied for kinetics of greater complexity, 

attention wiIi be restricted to the weight changes in a single-reaction Arrhenius 

process in a system whose temperature is increasin, 0 linearly with time, t, at a rate 

dTjdt = u. 

For a pure solid substance pyrolized in an inert medium via a reaction in which 

at least some of the pyrolysis products are volatile, W,, the weight at a given time, 
is related to the fraction, ); of the number of initial molecules not yet decomposed 
by the equation 

For clarity, the reaction w-i11 be assumed to be of first order; in the appendix the 

results are extended to reactions OC order n # I. Combining the above definition and 

restrictions, one obtains 

d/v/dr = -A~-e--= (2) 

or 

d_v,!dT = - (Ay$)e-= (3) 

where A is the Arrhenius preexponential constant. 

Van Krevelen ez al. 1 observed that most of the reaction occurs over a relatively 

narrow range of temperatures in the vicinity of T,, the temperature at which the 
reaction rate is maximum. The maximum rate is defined by equating to zero the time 

derivative of eqn (2), ciz_, 

rie-= dy;dt -Ale-= dz/dt = 0 (4) 

which, in view of eqn (3) and the definitions of u and z, yields 

E 
z,=-= 

RTm 

as an exact although implicit espression for T,_ TG is a useful technique only if A 

is very Iarge when E is large; the value of A must be such that eqn (5) yields reasonable 

ualues of 7’, for reasonabIe vaiues of U. 

PREWOLIS APPROXIMATlONS 

The previous approximations to J(T) have been developed by making different 

kinds of expansions of T about T, _ If additive constants of order z,- 1 are neglected, 

then that of van Krevelen ei al. I yields 

In[ln(l/y)] = (z=+ 1) In(zJz) (6) 
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while the first alternative of Horowitz and MetzSer’ gives 

In pn (I,‘,)] = 2, [(i,/Z) - 11 (7) 

and their second 

In[ln(l/~)] = --z+z,. (8) 

For all three of these equations, In [!n (I /_Y)] = 0 at T = I?, . 

Since z,/z = TIT,,,, eqns (6), (7), and (8) predict straight iines when in[ln (;,$)I 
is plotted versus In T, T, and - l/T., respectively. From these lines E may be computed 
as 

lA (In Cln WY)I) RT, for eqn (6), 
i A(In T) 

1 

A (In [h-r W-IX 
AT 

RTZ for eqn (7), and 

A (In I& (lj~)l~ 
A(-1jT) 

I-? for eqn (8). 

To illustrate the cIoseness of these approsimations, Fig. I shows the exact 
solution plotted on each of the three graphs suaested by eqns (6), (7) and (8) over 
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Fig. 1. Deviations from the linearity predictions of eqns (6). (7) and (8) for a heating rate of 5 ‘C;‘min 
and a simple first-order reaction with A = 1. I5 X IOx9 min --I and E = 55 kcal/mole (from ref. 3). 
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the range 0.999>~>0.001 for a numerical exampIe in which A = 1.15 x IO” min- ‘, 

E= 55 kcal:moIe, and u = 5Cimin. The error in the derived activation enerm 

depends upon how the siopes are determined_ If the assumption of linearity over the 

entire curve is maintained and the sIopes determined using the two end points in 

Fig. I, then the activation energy is overestimated by about 4 kcaIjmole using eqn (6) 

and by nearIy 8 kcailmoie usin g eqn (7), but these errors decrease appreciabiy if the 

sIope is obtained in the vicinity of T,_ 
With eqn (8) the deviation from Iinearity in Fig. I is imperceptibIe. Regardless 

of where the slope is taken along the curve, the value obtained for the activation 

ener,oq- is too large by 2.3fr0.2 kcal~mole. The slopes shown at the two ends of the 

curve were obtained from the tables of VaIIet’. A constant correction factor, derived 

from Vallet’s tabIes, gives an activation energy in error by only 0.2 kcaI.‘moIe even 

at the extreme sIopes3. 

ASYMPTOTIC ASALYSIS 

Since J = I and T= T+, at r = 0, integration of eqn (3) from r+-, to T produces 

where dummy variabies of integration have been identified by primes_ StrictIy 

speaking, t = 0 at the start of a TG run, and r+, is the ambient temperature (at which 

a freshiy prepared sampIe of weight Jv, may decompose at a significant rate); the 

foIIowing equations cover this genera1 case. However, in the typical TG experiment 

the ambient reaction rate is immeasurabIy sIow and the first detectable weight change 

occurs when a temperature T, appreciabIy above T, is reached. For such experiments 

T+-, arbitrariIy may be taken as any temperature beIow Tr-even, if desired, a temper- 

ature below ambient-and the temperature-range restrictions specified below are of 

no concern. 

If, then, x = 2’ - z is introduced as the variable of integration, and if eqn (5) 

is used to eIiminate A/u, then eqn (9) becomes 

In(I/y) = [exp(z,--z)J(z,~z)21(z,s) 

where 

s = (T-T5r,)p-, (11) 

(12) 

Equation (10) is exact since no approximations have been introduced. 
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The factor e-= makes the integrand in eqn (12) small when _. is large. For large 
values of z, one can therefore generate an asymptotic expansion of I by first intro- 
ducing the expansion 

( > It-Y 
-2 

z 
= fo(n+l) -5 n ( > z 

then integrating term by term. There results 

I(z,s)- f (n+l)(-z)-” 5’xne-xdx. 
n=O J 0 

(13) 

(14) 

The integrals remaining in eqn (14) are incomplete gamma functions, and they must 
be retained as such if the expansion is to be uniform in s for 0 I .s I a. However, 
if sz is large, which will be true for large values of z unIess s is of order l/z or smaher, 
then asymptotic expansions of the integrals in eqn (14) can be used to simplify the 
asymptotic expansion of I_ Thus 

wS= 

I Xneex& = 
Jo 1 

cc -CL: 
x”e-“dx - 

-0 J 
xn eeX dx 

5= 

-5 
= n. -e 1 -51 

J 
(sz + L:)” e-” dtl 

0 

= n. -e I -s= (sz)” k Ill! ; (SZ)? 
m=O 0 (15) 

Equation (14) becomes 

I(z, 5) - f (nt-1) !(-z)-” -eBSZ e ngo miO (n+ 1) nz! (;r) (-9” (sz)-‘=. (16) 
lI=C 

This expansion is valid for z approaching infinity in such a way that sz approaches 
infinity. 

The restriction on sz is satisfied approximately for SZB 1, which defines a range 
of temperatures, very near the initial temperature, for which eqn (16) is not valid. 
For large values of z, this restricted range is quite small ald generaliy of no interest. 
Thus for typical values of z and for To about 300 K, the excluded range is roughly 
10°C above ambient. In the usual TG experiment only negligible reaction will have 
occurred, i.e., the value of )’ will still be exceedingIy close to unity. 

If s remains of order unity as z approaches infinity then, because of the factor 
e -‘I, the double sum in eqn (16) is exponentially small compared with each term in 
the first sum. In this case, the correct asymptotic expansion is obtained by deleting 
the double sum. There are limits, e.g., s proportionai to (I!z)Inr, in which Iow-order 
terms in the double sum are Iarger than high-order terms in the first sum. Neverthekss, 
in typical TG experiments, the double sum, which describes the dependence of the 
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thermo_mam on the initial temperature, will be negligibly small. In these cases, 
substitution of the appro_ximate expansion obtained from eqn (16) into the expression 
appearing in eqn (IO) produces, after the logarithm of the resuh is taken, the asymp 
totic expansion 

In [fn (l/y)]- -=i-zz,+21n (z,/t)fln 
[ 

f (n+l)!(-z)-” 
n=o 1 

which is valid for the limit of z approaching infinity_ 
Through terms of order I :z, eqn (I 7) is 

in~n(l/~)] = -_=+2~+2fn(z~z)-2/z+ O(z-z)+O(e-sz) 

(17) 

(18) 

where the order of the terms discarded by neglecting the double sum also has been 
indicated exphcitly. 

co_3fPARisoss 

It should be clear that the preceding deveIopment nowhere involved the 
assumption that (T-TT,)/T, is small. In this respect, it differs from the previous 
approximations. The onIy approximations underlying eqn (I 8) are represented by the 
requirements that I;‘_ and e-= be smah. Typically z = 50, so that the error stemming 
from neghzct- of the term O(z- *) in eqn (18) is 0.0004. The error stemming from 
neglect of the final term in eqn (18) will not exceed this provided that ~~0.16, which 
corresponds roughly to a temperature rise of 50°C above ambient. 

At the extremes of a typical TG curve, e.g., for the temperature at which 

3 - = 0.999 in Fig. 1, this error is approximately two orders of magnitude less than 
that calculated for the best of the previous approximations. If the term -2/z is 
neglected in eqn (18), then the error using this equation remains one order of 
magnitude Iess than that using eqn (3), and the restriction on s reduces approximately 
to the requirement that the temperature has risen 20°C. 

Since the determination of activation energies from TG data utilizes the sIope 
of the approximate curve, minimum departure from linearity, perhaps more than 
minimum absolute error in InQn(1 &)I, wilf facihtate accurate reduction of data. 
The Iinearity of graphs for eqns (6), (7) and (8) can be tested on the basis of eqn (18). 
Comparison of eqn (18) with eqns (6), (7) and (8) reveais that of the three previous 

approximations, only eqn (8) is identical with eqn (18) up to terms of order hr(z&)- 
Thus, the particufa;- expansion about 7, given in eqn (8) fortuitiousfy agrees with 
the first term of an asymptotic expansion in the huge parameter 2. This can expIain 
the high degree of linearity e.xhibited for eqn (8) in Fig. I_ Differentiation of eqn (18) 
reseals that the slope corresponding to eqn (S), din [In (1 /y)]/dz, is - I --2/z+ .._ , 
which varies onIy from - 1.037 to - 1.044 at the extremities of the figure. On the 
other hand, differentiation of eqn (18) with respect to In z or l/z exhibits a much 
greater variation in sIope. 
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To derive eqn (6) or (7) from eqn (18) necessitates introducing expansions 
about T= T,. Two such expansions are 

‘=+-[I-(~)+..] 
T 

and 

(1% 

The lowest-order version of eqn (18), i.e., eqn (S), is converted to eqn (7) by intro- 
ducing eqn (19) and to 

In[ln(l/~)J = z, In(zJz) (21) 

by introducing eqn (20). If the logarithmic term is retained in eqn (18), then the 
expansion about T, given in eqn (20) produces 

In [In (1 /IV)] = (z,, -f- 2) In (2,/z). WI 

For large z neither eqn (21) nor eqn (22) differs significantly from eqn (6). 
In view of the established high degree of linearity for eqn (S), the observation 

(Fig. 1) that eqn (6) is more nearIy Iinear than eqn (7) can be explained from the fact 
that the lowest-order approximation to eqn (6), ciz., eqn (21), agrees better with 
eqn (8) than does eqn (7) This can be seen by making two-term expansions of eqns (7), 
(8) and (21) about T= T,. Expressed in terms of T- T’, the expansion is simply 

( > Tn l-- zrn 
Ku 

for eqn (7), 

Clearly, the last of these is about twice as good as an approximation to the second, 
than is the first. Stated differently, the reievant observation is that for the expansion 
of I/T about T= T,, the function In(~?J looks more like the exact function, riz. 
(T- Talr, than does (T- ra/7’, . But of course, formally the error is of the same 
order for eqns (6), (7), (21) and (22), niz_, of order z,[(T- T,.J/TJ’. 

These reIationships further emphasize that an expansion about T, is not strictry 
justified from zn asymptotic viewpoint, that contributions occur from higher-order 
terms in such an expansion, and that the reaction does proceed at temperatures 
differing appreciably from T, . Nevertheless, in some sense most of the reaction does 
occur near T, when the activation energy is Iarge. The sense in which this is true can 
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be seen from eqn (18) in iovvest order, i.e., eqn (a)_ In the derivation of eqn (18), 
explicit restrictions were imposed on T but not on the range of y. ImpIied restrictions 
on 3: are exceedingiy Ienient, especially in the range of small y. On the other hand, 
suppose that one is interested only in the intermediate range of y over which the 
bulk of the reaction occurs, Le., the range defined by the sensitivity of the instrumen- 
tation. This range can be specified by requiring --atIn[In(I[~)]<tb, where Q and b 

are fixed positive numbers. 
Tt is clear from eqn (S) that as r, approaches infinity, the corresponding temper- 

ature range, Le., T,(l +-a~~?,)- ’ -E T-C T,(I -b_!zJ- ‘, narrows about T,. If a,!z, and 
b;zm are small compared with unity, then the relevant range of T becomes - a:z&-c 

(T- T,)!T,,, < b;z, , which justifies the expansions underIying eqns (6) and (7). As z, 
approaches infinity, a11 of the expansions become equivaient and correct for 
-a<In[In(l;~-)J < b. However, usuahy vaiues of Q and b that exceed unity are of 
inten&, and in such cases the restrictions aizm< I and b,‘=& I, needed to justify the 
expansion about T=, are somewhat more stringent than the restriction I/z< 1, needed 
to justify the asymptotic expansion. 

GRAPHICAL ~MEfHOD OF IlCfPROVED ACCURACY 

Differentiation of eqn (18) provides a simple means of improving the accuracy 
in determining E from the plot of eqn (8). Through terms of order Inz in eqn (I8), 

(23) 

For z = 50, then, the assumption of a constant sIope with value E/R is in error by 4%. 
For the exampIe in Fi g. 1 this corresponds to an error of roughiy 2 kcal!moIe in E. 
However, in the usual case (see Fig_ I), the temperatures of interest fall within a 
narrow range about some intermediate temperature, -Ti. If this range is within 10% 
of Tj, the assumption that T= Ti in the Iast term of eqn (23) leads to the following 
as an estimate of E that is better by an order of magnitude rhan that obtained directly 
from eqn (S): 

E = (In [In (1Ml) R_2RT 

A (--VT) 
I- (24) 

For exampIe in Fig. 1, use of eqn (24) is equivalent to multiplying the slope for 
eqn (8) by 0.96 [as in eqn (19) of ref. 31 and gives a value of E in error by no more 
than 0.2 kcaI,/mole. Within this accuracy Ti may be taken as any temperature between 
the extremes of the curve. The value Tj = T, may be used, but if, instead, the mid- 
point temperature (Le., the temperature at which y = 0.92) is chosen, the error in E is 
reduced to about 0.05 kcaIimoIe_ 

ShouId such improvement be warranted. a better means of obtaining the more 
accurate value of E graphicaIIy [by a reduction of the curvature in the Iine for eqn (S)] 
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is also provided by eqn (I 8). Instead of pIotting In[ln( I !_r)] versus (I : T), one may 
plot In[ln(I~~)J-2In(K;T,,J versus l;T. Alternatively, one may simply plot ln[ln(lj>*)] 
-21n T and not bother to observe I,. According to eqn (I 8), up to terms of order 
I/Z or ems=, whichever is larger, the graph in either case will be a straight line with a 
slope of - E;R. 

APPENDIX 

For a reaction of order n, eqn (1) is 

and eqn (5) becomes 

E 
- = In 

n.-lRT,Z v~“-~ 

RT, UE 

The analog of eqn (9) is 

(Al) 

(A2 

(A3) 

As expected, eqn (A3) demonstrates that )’ approaches zero only as T approaches 
infinity for n> I, but y reaches zero at a finite value of T for II < I _ 

It is easily found that what corresponds to eqn (IO) is 

1 
- - 1 = [exp (z,-z)] 
Yn-1 (?jZ (sj zczy s), 

where I again is given by eqn (12). It thus becomes clear that the generalization of 
eqn (18) is 

*n(+1)= --z+z, 

(As) 

A plot of InLr-(“- ‘)- I]-21n T versus l/T provides a quite s+Jngent linearity test 
for an nth-order reaction and yields the activation ener,oy from the slope -E/R_ 
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