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Note 

The role of constitutive equations in cherrical kinetics 
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Recent artic!es on the non-isothermal rate equationls3 have initiated a rather 
extensive discussion I1 3_ Misunderstanding arose mainly about the meaning of the 
partial derivativ-es of the function f in the equation for the fractional conversitin Z, 
(a kinetic variabte conventionaIIy normaiized Q = 0 at t = 0 and 31 = 1 at t+n): 

where T and t represent temperature and time, respectively-. Some authors claimed 
that onIy the partial derivative (?~Zt), can ce used so that the functionfis appro- 
priate for the description of an isothermally mez;sured rate of a chemical reaction1-3, 
whiIe others proposed that it may describe non-isothermal kinetics as weI1 if either 
the partia! derivative (ZJ~CT),~ or the tota1 differential dr5 are equal to zero. -4nother 
susgestion6 related this probIem to the non-uniform temperature within a solid 
sample. Xlthou~h some useful criticism on these inccrrect ideas ~3s already given7-’ 3 
and the path function character off in eqn (1) emphasizeds*9 there still remain 
certain confusions_ Therefore we wouid like to cIa;ify this question from 3 more 
unifyins viewpoint_ 

We will mention two different ways in which the telation (1) may be understood: 
(A) If eqn (I) represents an equation of siate (calied “the constiturive 

equation”) of a chemical system under consideratior then eqn (1) impIies that the 
vaiue cz at t depends on the time t, and the instantaneous vaIue of the temperature T 
at t regardtess of its previous temperature hist nry_ The zonstitutive equation of type (1) 
would describe the behaviour of a system controlled by an independent “internal 
clock”. Such an equation is e.g. the constitutive equation for the pressure p of a gas 
which is evoIved by a radioactive decay. The number of moIecuIes produced is con- 
troIIed by the radioactive mechanism and is not affected by the temperature. The 
pressure p is expressed by a function P of the number of molecules, i.e. a function of 
time t, and the temperature T at t only, p = P(T, 1). 
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It seems that ordinary chemical systems treated so far by the standard methods 
of chemicai kinetics 1 s do not represent the case of systems with an “internal clock”. 

The controversy concerning the total differential dz and the partial derivatives 

(CfiZT), and/or (Cfl?~)~ which appears in some preceding papers’-’ is a consequence 

of the application of the described non-adequate interpretation of eqn (1) for ordinary 

chemical systems_ 

(B) We are convinced that the constitutive equation for the fractional con- 

version z determined in a chemical system is 

5 = F(z, T) (3) 

or in a more general form 

.2= G(z, T, i, T, ___) (41 

Equations of the eqn (3) type are well estabIished in isothermal kinetics’*’ **lZ_ 

Equation (4) which has the form known for non-equiIibrium situations could be more 

appropriate in the case of hi&Iy non-isothermal kinetics. 

Based on eqn (3) or (4) eqn (1) may be interpreted as foIIows. For the initial 

conditions (r = 0 and T= T,, at t = 0) and a specsed temperature regime. T= G(t). 

we denote the soIution of eqn (3) or (4) as 

z=Z&)_ (51 

Kate that rhe subscript CD indicates that the solution depends on rhe temperature 

regime @(tj, i.e. x is p?th dependent_ In mathematical terms it means that r is a 

functional of @. 

For some special instances of “temperature” kinetics soIution (5) can be 

converted into the form (1% XVe illustrate this for a simple case of the --Iinear” non- 

isothermal kinetics, where 

T=@(l)=jliT, (6) 

and where q5 is the constant temperature rate. When substituting eqn (6) into eqn (3) 

we obtain 5 = F(z_ &t-t T,,j or simiIarl_v from eqn (4) i = G!z_ (;5r i TO_ 4,. 0. _ _ _i_ The 

solution (5) can then be written in the form z =gO(Q, l,,. I)_ Tt means that the 

functicnal dependence (5) is reduced to the function dependence of r on two para- 

meters $ and T,, v. hich specify the temperature regime @. If we compare the e-.oIution 

of the fractional conversion x for multipIe runs accompiishcd at diKerent $ holding 

the initial temperature T, fixed. we can write 

x =g,,(+, T,, t) =g(@. t) =g((T- T&t, r> =f,,(T, To. r) =f(T. I) (7) 

If we understand eqn (1) in the described sense. which is illustrated b_v eqn (7). 

then the interpretation of the total differential dr and the partial derivatives, rxtmely 

(CTXS7-),, represents no principal difXcuIty_ For a specified class of temperatkrc 

regmes eqn (6) the eqn (7) can be properly represented as a surface in a three- 

dimensiona diagram z-r+. TheI; it is easy to realize that within this specified class of 
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temperature regimes 0 the isochronal derivative (Cgi&$), indicates the change of z 

measured at the same time z between two infinitesimally close re,oimcs differing by d+? 

i-e_ between two paralle! z-r cm-x-es lvhich are the sections of the surface taken at 4 and 

4-td+_ Similarly we can interpret the derivative (CxC;T), using the 2-r-T diagram. 

A more comprehensive discussion of the meanin g of the partial derivatives was dealt 

with in our previous pqer’ 3_ 

\Ve thank Dr. A. Bergstein, Dr. P. Holba, Dr_ P. Hrma, Dr. E_ KratochviIov5 

and Dr. K. ZG3a for helpful comments. 
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