THERMODYNAMIC FUNCTIONS FOR BIPHENYL AND THE 4,4'-DIHALOGENOBIPHENYLS

H. ALEMAN AND J. LIELMEZS

Chemical Engineering Department, The University of British Columbia, Vancouver 8 (Canada) (Received 6 March 1973)

ABSTRACT

Thermodynamic functions, C_p^2 , S^3 , $(H^2 - H_0^2)/T$, $-(F^2 - H_0^2)/T$, have been calculated for biphenyl and three 4.4'-dihalogenobiphenyls (4.4'-difluoro-, -dichloro-, and -dibromobiphenyl) in the ideal gas state from 298.15 K to 1000 K at 1 atm pressure. The restricted internal rotational contribution for all these compounds has been treated by the conventional Pitzer-Gwinn method.

The agreement between the calculated and the available experimental values is excellent.

NOMENCLATURE

a. b, c	constants
n _m	number of minima of the rotational barrier function
C_{p}	ideal gas heat capacity at constant pressure (cal/mole K)
$-(F^{z}-H_{0}^{z})/T$	ideal gas free energy function (cal/mole K)
$(H^\circ - H_p^\circ)/T$	ideal gas enthalpy function (cal/mole K)
$I_{\rm A}$. $I_{\rm B}$, $I_{\rm C}$	principal moments of inertia (g cm ²)
I _m	moment of inertia of rotating top (g cm ²)
Ircd	reduced moment of inertia (g cm ²)
<i>S</i> '	ideal gas entropy (e.u.)
Т	absolute temperature (K)
$\alpha_{A}, \alpha_{B}, \alpha_{C}$	directional cosines
v	wave number (cm ⁻¹)
σ	molecular symmetry number
Л	any of the thermodynamic functions (cal/mole K)
Supercripts ² ref	fer to the ideal gas state

Subscripts p refer to pressure.

INTRODUCTION AND DISCUSSION

The recent availability of spectroscopic and structural data for diphenyl and 4,4'-dihalogenobiphenyls¹⁻³, has made it possible to estimate the thermodynamic

TABLE 1

HEAT CAPACITY, ENTROPY, FREE ENERGY FUNCTION AND ENTHALPY FUNCTION

5. cal mole K) 9.78 45.43 0.05 45.71 3.86 59.47 5.44 70.74 4.63 79.59	47.52 47.79 61.22	-48.50 -48.76
9.78 45.43 0.05 45.71 3.86 59.47 5.44 70.74 4.63 79.59	47.52 47.79 61.22	48.50 48.76
0.05 45.71 3.86 59.47 5.44 70.74 4.63 79.59	47.79 61.22	48.76
3.86 59.47 5.44 70.74 4.63 79.59	61.22	
5.44 70.74 4.63 79.59	-	61.92
4.63 79.59	72.18	72.71
	80.77	81.19
1.95 86.54	87.51	87.85
7.86 92.09	92.90	93.18
2.74 96.61	97.28	97.51
6.80 100.34	100.90	101.10
)		
2.86 100.41	105.36	110.18
3.11 100.70	105.65	110.48
6.59 115.78	121.29	126.36
9.87 130.31	136.18	141.38
2.64 144.02	150.13	155.42
4.72 156.84	163.11	168.45
6.06 168.77	175.16	180.54
6.70 179.88	186.36	191.78
6.69 190.26	196.80	202.24
$H = H_0 T$ (cal mole	(K)	
1.51 24.70	26.45	27-62
1.62 24.83	26.57	27.74
7.94 31.81	33.60	34.69
1.36 38.57	-10 27	11.05
).34 44.65	46 33	17 71
5 77 50 16	51.75	57 57
0.68 55.07	56 57	57.33
5.09 59.44	60.86	61.57
9.07 63.35	64.69	65.34
ion $-(F^{2} - H_{0})^{2}T$ (cal)	mole K)	
.35 75.71	78.91	82.56
1.49 75.87	79.08	82.74
8.57 83.97	87.69	91.67
5.51 91.79	95.91	100.12
2.30 99.37	103.80	105 18
8.95 106.68	111.36	115 88
538 113.70	118 59	12200
		1 / 5. / 1
1.61 120.44	125.50	123.21
	106 168.77 $.70$ 179.88 $.69$ 190.26 $(H - H_0) T$ (cal mole $.51$ 24.70 $.62$ 24.83 $.94$ 31.81 $.36$ 38.52 $.34$ 44.65 $.77$ 50.16 $.68$ 55.07 $.09$ 59.44 $.07$ 63.35 $on - (F^{\pm} - H_0) T$ (cal) $.35$ 75.71 $.49$ 75.87 $.57$ 83.97 $.51$ 91.79 $.30$ 99.37 $.95$ 106.68	106 168.77 175.16 $.70$ 179.88 186.36 $.69$ 190.26 196.80 $(H - H_0)$ T (cal mole K) $.51$ 24.70 26.45 $.62$ 24.83 26.57 $.94$ 31.81 33.60 $.36$ $.38.52$ $.40.27$ $.34$ $.44.65$ $.46.33$ $.77$ $.50.16$ $.51.75$ $.68$ $.55.07$ $.56.57$ $.09$ $.59.44$ $.60.86$ $.07$ $.63.35$ $.64.69$ $on -(F^2 - H_0)^T T$ (cal/mole K) $.35$ $.75.71$ $.78.91$ $.49$ $.75.87$ $.79.08$ $.57$ $.83.97$ $.87.69$ $.51$ $.91.79$ $.95.91$ $.30$ $.99.37$ $.103.80$ $.95$ $.106.68$ $.111.36$ $.11.36$ $.11.36$

functions—heat capacity, enthalpy, entropy and free energy—for these compounds in the ideal gas state at 1 atm pressure. The functions for each given compound were calculated by statistical-mechanical methods, treating the internal rotational barrier contributions by means of the conventional treatment of Pitzer and Gwinn^{4,5}. The results presented in Table 1 are fitted to eqn (1)

$$A = a + bT + cT^2 \tag{1}$$

where A is the thermodynamic function at temperature T. (K). The constants a, b and c (eqn 1) were calculated using least squares curve fitting methods^c and are found in Table 2. This table also gives the maximum deviation between the values listed in Table 1 and the corresponding values determined through the use of eqn 1. Table 3 presents values of the molecular parameters used in thermodynamic function calculations. The molecular structural data and configurations appeared to be well established¹⁻³, all the investigators¹⁻³ suggesting that biphenyl and its various substituted derivatives are non-planar (staggered configuration) in the vapour phase.

Function	а	$b \times 10^2$	c×105	Standard ⁵ deviation (cal-mole K)
Biphenyl				
<i>C</i> ;	- 8.6319	18.86	- 8.380	0.6341
$(H - H_0) T$	-1.2058	8.24	-2.201	0.1525
$-(F - H_0)'T$	49.0197	7.75	-0.884	0.0351
S'	47 8139	15.98	- 3.085	0.1795
4,4'-Difluorobiphe	nyl			
C_p^2	-2.1746	18.73	- 8.570	0.5991
$(\dot{H}^{2} - H_{0})^{T}$	-0.0794	9.11	-2.766	0.0634
$-(F'-H_0)T$	49.9048	9.06	-1.359	0.0099
<u>S</u> -	49.8254	18.17	-4.125	0.0648
4.4'-Dichlorobiphe	enyl			
C,	1.1736	18.24	- 8.364	0.5951
$(\dot{H} - H_0) T$	1.6596	9.15	-2.848	0.0485
$-(F^{z}-H_{0})^{T}$	51.4180	9.72	-1.657	0.0179
S	53.0776	18.87	- 4.505	0.0472
4.4'-Dibromobiphe	enyl			
C	2.9535	17.91	-8.185	0.5703
$(H^3 - H_0)^T$	3.1723	9.02	-2.809	0.0463
$-(F^{\prime}-H_{0}^{\prime})^{\prime}T$	54.0557	10.13	- 1.854	0.0407
S° .	57.2280	19.15	-4.663	0.0558

TABLE 2 CALCULATED² CONSTANTS a, b AND c in Equation (1)

^a Constants for eqn (i) calculated using input data for temperature range 298.15-1000 K. ^b Standard deviation of residuals, $S = \sum_{i=1}^{n} (Y_i - Y_{i^*})^2 (n - m - 1)$; where *n* is the number of observations; *m* is the number of independent variables; Y_{i^*} is the *i*-th observed value of Y (Table 1) and Y_{i^*} is the predicted value of Y (eqn 1).

	TA	BL	.E	3
--	----	----	----	---

MOLECULAR PARAMETERS OF BIPHENYL AND HALOGENATED BIPHENYLS

Biphenyl			4,4*-d bipher	4,4*-difluoro- biphenyl		4,4'-d bipher	4,4'-dichloro- hiphenyl			4,4'-dibromo- biphenyl		
Fund	amenta	l frequenc	ies (v, cm ⁻	' (rcf.	1)]							
3073	3073	3072	3073	3073	3072	3072	3072	3072	3072	3072	3072	
3072	307 0	3070	3072	3070	3070	3072	3070	3070	3072	3070	3070	
3069	3069	3069	3069	3069	1604	3070	3070	1594	3069	3069	1588	
3069	1613	1595	1600	1586	1555	1593	1593	1556	1587	1584	1538	
1595	1567	1505	1519	1496	1394	1505	1474	1389	1498	1470	1383	
1481	1455	1430	1391	1320	1302	1380	1300	1275	1370	1300	1282	
1337	1317	1282	1284	1283	1267	1275	1271	1242	1263	1245	1224	
1266	1233	1192	1242	1230	1164	1186	1180	1123	1184	1166	1100	
1174	1158	1155	1153	1100	1095	1096	1070	1019	1079	1071	1069	
1094	1072	1042	1018	1017	1008	1013	100-1	1000	1016	1010	1000	
1029	1007	1003	966	958	938	957	953	949	970	962	949	
990	979	964	932	847	840	941	843	829	944	941	822	
964	964	917	821	812	812	817	812	768	814	808	757	
902	838	838	806	728	704	722	704	696	718	672	668	
778	740	735	658	638	630	637	627	538	635	624	537	
697	670	626	542	515	515	536	501	423	497	460	412	
615	609	543	454	415	415	-406	-406	369	-408	355	316	
486	405	367	415	389	358	306	306	270	271	237	222	
367	307	265	255	255	178	219	215	157	190	167	145	
112	77		96	72		95	63		89	73		
Princi	ipal mo	ments of	inertia, g c	m² × 10	0 ³⁹ (refs	. I and 2)						
I_{Λ}	29.64	4		29.644	ŧ.		29.644	ļ.		29.644	F	
I _B	148.386 289.023		-	464.517	7		916.478	ļ				
Ic	178.02	29	318.668		4	494.146			946.121			
Redu	ced mo	ment of in	nertia, g crr	$1^{2} \times 10^{3}$	³⁹ (refs.	1 and 2)						
/ _{rtd}	7.41	1		7.411			7.411			7.411		
Mom	ent of i	inertia of a	rotating to	p. g cm	$n^2 \times 10^{39}$	(refs. 1 and	2)					
I _{rrt}	14.82	22		14.822	2		14.822			14.822	2	
Used	value o	of the ener	rgy (kcal/m	ole) of	internal	rotational l	oarrier	(refs. 1 a	nd 2)			
	3			3			3			3		
Mole	cular st	ape facto	r (refs. 1, 2	., 3)								
	4	-	·	4			4			4		
:√uml	ber of r	otational	barrier mir	nima, n	m (ref. i)						
	2		-	2		-	2			2		
Physi	cal con	stants: ref	. 12.									

However, calculations made for planar configuration and staggered configuration (twisted structure¹, possessing a dihedral angle of $45 \pm 15^{\circ}$) separately, showed that changes in calculated thermodynamic function values are small (<0.1% increase for biphenyl and even smaller increase for halogen substituted derivatives of biphenyl molecule).

The value of the reduced moment of inertia^{4,7}, I_{red} , appearing in Table 3, was calculated from eqn (2):

$$I_{\rm red} = I_{\rm m} \left[\frac{1 - \sum_{i} \alpha_i^2 I_{\rm m}}{I_i} \right]_{i=A,B,C}$$
(2)

Where $I_{\rm m}$ is the moment of inertia of the rotating top about the chosen axis of rotation; while $I_{\rm A}$, $I_{\rm B}$, $I_{\rm C}$ are the principal moments of inertia and $\alpha_{\rm A}$, $\alpha_{\rm B}$, $\alpha_{\rm C}$ are the corresponding directional cosines.

Comparing the calculated thermodynamic function values with the available calorimetric measurements⁸, it was found that for biphenyl (using the two-fold internal rotational barrier of 3 kcal/mole as suggested by Barrett and Steele¹) the spectroscopic entropy at 528.40 K was 0.02 cal/K less than the calorimetric value^{*}. This is in excellent argreement with the measurement and strengthens the certainty in the correctness of the low frequency assignment values¹. The presented thermo-dynamic function values (Table 1) also compare satisfactorily with the thermodynamic property values for biphenyl as obtained by Katon and Lippincott⁹ who used somewhat different low frequency values.

In this work we have used an internal rotational barrier height (Table 3) of 3.0 kcal/mole for all of the 4 compounds. It should be noted that this is an approximation and neglects the symmetry and substituent halogen atom effects on the internal rotation^{10.11} of the rotating tops. However, the uncertainty in the choice of correct internal rotational barrier is apparently much larger^{1.9} than the neglected effects^{10.11}.

ACKNOWLEDGEMENT

The financial assistance of the National Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 R. M. Barrett and D. Steele, J. Mol. Struct., 11 (1972) 105.
- 2 G. Casalane, C. Mariani, J. Mugnoli and M. Simonetta, Mol. Phys., 15 (1968) 339.
- 3 M. Michelsen, P. Klaeboe, G. Hagen and T. Stroyer-Hansen, Acta Chem. Scand., 26 (1972) 1576.
- 4 J. Lielmezs and A. A. Bondi, Rotational Isomers in Thermodynamic Calculations, Shell Development Company TR-208-58-R, 1958.
- 5 K. S. Pitzer and W. D. Gwinn, J. Chem. Phys., 10 (1942) 428.
- 6 University of British Columbia Computing Centre, "TRIP" program, 1971.
- 7 B. L. Crawford Jr., J. Chem. Phys., 8 (1940) 273.
- 8 M. Rolla, Boll. Sci. Fac. Chim. Ind., Bologna, 2 (1941) 181; Chem. Abstr., 37 (1943) 42962.
- 9 J. E. Katon and E. R. Lippincott, Spectrosc. Acta. 15 (1959) 627.
- 10 J. Lielmezs and J. P. Morgan, Nature, 202 (1964) 1106.
- 11 J. Lielmezs and B. J. Hagan, Theor. Chim. Acta, 15 (1969) 89.
- 12 E. R. Cohen and J. W. M. Dumond, Rev. Mod. Phys., 37 (1965) 537.

^{*} The calculated entropy value at 528.4 K is 123.56 e.u., while the corresponding experimental entropy is 123.58 e.u.