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i. HETEROGENEOUS EQUILIBRIA
1.1. Gencralization of equilibrium conditions

Thermodynamics is perhaps the most general discipline developed for direct
application to physico-chemiical systems. Classical thermodynamics deals with the
macroscopical properties of matter in bulk and i< not concerned with the atomic and
molecular structure. All information about a system is contained in the equation’

S=S(U, V, Ny ... N)) (1.1)

where the entropy, S, is a function of extensive parameters, the internal energy, U,
the volume, V. and the mole number of the chemical components, ~;. Equation (1.1)
could also be solved uniquely for U as

U=U(S, V.N,...N). (1.2)

This holds all the necessary information about the system in questicn as well. Such an
approach was found useful in ti,2 case that the phenomena of mechanics and heat are
discussed simultaneously. The application to chemical problems, however, requires
another mathematical formalism.

In the laboratory, intensive parameters are more easily measured and con-
trolled than the extensive ones. Through the Légendre transforms' of the function U
(see eqn. (1.2)) of the extensive variables are replaced by intensive ones. From the
experimental point of view the three following cases are the most important:

1) For an isobaric system the state function, H,

H=U+PV (1.3)

called enthalpy is the partial Légendre transform of U where the volume, V, is
replaced by the pressure, P, as the independent variable

H=H(S, P, N,...N) (1.4)

2) For the case of an isothermal mechanically isolated system the Helmholtz
free energy, F,

F=F{T,V,N,...N)=U-TS (1.5)

is the most convenient and is a partial Légendre transform of U replacing the entropy,
S, by the temperature, 7, as the independent variable.

3) For an isothermal and isobaric syste 1 another Légendre transform of U is
advantageously assigned with the Gibbs free energy, G,

G=G(T,P,N,...N))=H—-TS (1.6)

as a partial Légendre transform of U which simultaneously replaces the entropy by
the temperature and the volume by the pressure as the independent variables.
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In an homogeneous system, the infinitesimal reversible change of the internal
energy, U, is given by

dU = O—U) dS+(E-l—l- dv+ ) a—b) dN; 1.7
¢S /v.N oV /s~ T \CN;/sv

vihere partial derivatives define the intensive parameters of temperature, 7, pressure,
P, and chemical potentials, yu;, respectively,

(ib) =T; gli\ = —FP and cU) = ;. (1.8)

cS/v.y CV /s~ \ON./s¥v

Equation (1.7) can be written in the form cailed the Gibbs phenomenological relation
dU = TdS—PdV + Y pdN;. (1.9)

Simifarly, for the other state functions the following relations hold:

dH = TdS+VdP+Y u;dN,
dF = —SdT—PdV+Y p,dN; (1.10)
dG = —S3dT+ VaP+) p,dN;

The problem of classical thermodynamics becomes the determination of the
equilibrium state of a system (the properties of which are independent of time). This
problem: is solved on the basis of the postulate that in an isolated (i.e., composite)
systern. the equilibrium value of any (unconstrained) internal parameters charac-
terizing the state of the system corresponds to the maximum of entropy for the given
energy content or,

for L' = constant, dS=0 and d2S<0 (1.11)

The task of determining the equilibrium state is hence rcduced to the purely mathema-
tical problem of finding the entropy maximum (see eqn. 1.1).

All natural processes taking place in an isolated system tend towards equili-
brium. If a system attains equilibrium, then any conceivable change in it must be
reversible. This puts the equilibrium conditions into various forms, each of general
validity, e.g.. for an isothermal and isobaric system

dG=0 and d? G>0 (T = constant, P = constant). (1.12)

Likewise, for constant volume and temperature the Helmholtz free energy becomes a
wainimum, dF = 0, and d? F>0. The second derivative expresses the conditions of the
stability of the cquilibrium state. In the case the equilibrium conditions are fulfilled
for some different values of G and F than those for their lowest values compatible
with the given external conditions, the system is considered to be in a metastable
equilibrium state.

The advantage of a thermodynamic approach to the study of systems behavior
results, in the first place, from the nature of the state functions U, S, H, F and G.
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Ahhough the absolute values of these functions are not-known, it is easy to determine
their relative changes. The choice of an appropriate standard state permits the use of”
the functions and their tabulation. Because the change of state function is not de-
pendent on the path along which the systems move from the initial to the final state,
thermodynamic considerations facilitate the determination of the most suitable way
for the experimental measurement of data characterizing equilibria.

The method of classical thermodynamics has a very broad field of application®-*.
The most important topics in chemistry and chemical engineering areas involve:

1) Quantitative description of the properties of homogeneous systems (pure
substances, mixtures and solutions).

2) Prediction of the energy change accompanying a process in question
(chemical reaction, phase change).

3) Prediction of the conditions under which various substances or phases exist
in equilibrium.

4) Prediction of the direction of chemical reactions or phase changes under
certain specified conditions.

1.2. Thermodynamic properties of subs-ances

For most physico-chemical ca'culations®-® it is necessary to know both the
properties of chemical individuals, mixuures, and solutions, as well as their dependence
on the state variables such as pressure, temperature and composition. The behavior
of perfect gases is expressed by the state equation for an ideal gas

PV =nRT (1.13)

where n is the number of moles and R is the gas constant. However, for real gases
there exist various empirical relations?-%. For chemical calculations, particularly in
the case of equilibria, it is convenient to employ the chemical potential, u. expressed
by means of the function called fugacity, f (Lewis et al.)?

duy=RTdInf (1.14)

Fugacity, in other words, is a thermodynamic effective pressure and is defined by the
equation, VdP =nRT d In £, and by the limit

=1 (T = constant). (1.15)

3
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It becomes equal to the pressure only at very low pressures (nearly perfect gas). For
real gases, it can be calculated from experimental P-V-T data. A frequently used
term is the fugacity coefficient, v, given by the equation, i

P =v. (1.16)
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For perfect gases it is not difficult to derive the changes of the state functions, H, S, G,
and F, with the temperature and/or pressure?-®. For real gases, it is sufficient to
determine merely the deviation from the perfect state.

More important is the state behavior of gaseous mixtures. Besides the total
pressure and temperature. it is necessary to consider also the composition, the value
of which is commonly expressed by the mole fractions, x;. In order to predict mixture
behavior from the behavior of pure components, there are two approaches:

(@) Dalion’s law

P=Yp, (1.17)

and

(6) Amagare’s law

V=3 ¥ (1.18)

Enthalpy. entropy and heat capacity of such mixtures are also determined by
approximate methods, as shown by Hougen and Watson®.

The fugacity of a component, j. in a gaseous mixture is given by the Lewis
relation?

Si=Jix; (1.19)

where x; is the mole fraction of j-th component and /7 is the fugacity of the pure
component under the toial pressure of the mixture whose state is adopted as the
standard one. The relation beiween the chemical potentia: of j-th component and its
fug.: ~ity is given by equation

du;= RTIn f; (1.20)
or in relation to a standard state (%)
p;—pu; =RT Inf;/f7 =RT Ina; (1.21)

where f} is the fugacity i the reference state adopt=d and g; is the activity (Lewis
et al.?). The standard state is chosen in such a way that the resulting numerical values
of activities corresponds to partial pressures or concentrations for a perfect system.
For gases, unit fugacity (f; = 1) is chosen for the standard state so that the component
activity is equal to the fugacity which, for a perfect mixture [see egns. (1.15} and
(1.19)} is equal to the partial pressure.

For condensed systems, a pure component at the temperature and pressure of the
svstem is chosen for the standard state; the component activity is then equal to the
mole fraction. Generally it is valid that

a;/x;=7%; (1.22)
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where x; is the mole fraction and 7; is the activity coefficient. The numerical value of
7; is a matter of the standard state convention. Aqueous solutions are discussed by
Lewis et al.?, while organic substances are described by Hildebrand et al.'°. The
problem of ioric melts and solid solution' ! are discussed by Témpkin®2. Driessens®?,
Holba!* and others®>.

Thermodynamic quantities, which characterize a given mixture, can be cal-
culated from the free energy of mixing, AG™, which is defined as the change of free
energy associated with the formation of a solution from pure components at¢ constant
temperature and pressure

AGM = Y x;u;— Y x;u5 (1.23)
J z
On combining eqns. (1.21) and (1.22) with (1.23) we obtain
AGM=RTY x;lnx;+RTY x;Iny; (1.24)
J J

where the first term on the right-hand side represents the free energy of mixing of a
perfect solution and the second term its non-ideality which is often designated as the
excess free energy, AGE. The dependence of AGE on the composition can be described
by a power series

M
AGE=x(1—x) Y anx™ (1.25)
m=0

the coefficients of which must be determined experimentally'°.

1.3. Energy balance

One of the basic problems often met in practice is the determination of heat
liberated and/or absorbed during a reaction, the measurement of which is usually
made under constant pressure. Such a calculation requires a knowledge”-? of:

(a) The specific heats of participating substances, the temperature function of
which is usually given by

C,=a,+a,T+a,T? (1.26)
where a,, a, and a3 are constants to be determined experimentally.

(b) The enthalpy change of substances under consideration at the temperature
of the phase transition.

(c) The enthalpy changes associated with the chemical reactions given for the
standard state, usually chosen as 25°C and 1 atm. The standard enthalpy of formation,
expressing the enthalpy change which accompanies the formation of one mole of
resulting compound from its elements under standard conditions, is tabulated.
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The total enthalpy change for a reaction, AH_, is given by the law of Hess
AH: = 2 VfAH? fproduct_ z VfAH:jr-cunu (1'27)
3 i

where v; is the stoichiometric coefficient of the j-th component and AH;} is the
standard enthalpy of formation of the j-th compcnent. For recalculation of the
enthalpy to another temperature, Kirchofi’s law is used

=N

A xra%
[FaVys
( ST )P = ACP = Z CPproduct - z Cprescunt' (1'28)

If an exothermic reactiion is carried out adiabatically, the system may achieve a
maximum temperature, the value of which can be calculated under the condition that
all the heat liberated is consumed to heat up the product

Fady of

-]
—AH; = ‘ memdwdT 1.29)
« To
where T, is the initial temperature of the system ir question, AH is the enthalpy
change and C, is the specific heat of the product which has the mass, m.

1.4. Thermodynamics of phase changes and chemical reactions

When eqgns. (1.10) and (1.12) are applied to a homogeneous system at constant
temperature and pressure, the conditions of equilibrium are

dG =) p;dN; =0. (1.30)
J
For a system composed of z-phases
dG =3} ) p;dN;. (1.31)
z ]
If no chemical reactions occurs, the total amount of each component in a closed
system remains constant so that

3 (dN;)*=0. (1.32)

This gives the general condition for phase equilibrium
wi=pl=p= = (1.33)

FFor the coexistence of two phases in a single-component system, eqn. (1.33) results in
the Clapeyror equation

dP -5
dP _s"—s" _As _ Ak (1.34)
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where 4s, Av and Ah are the changes of molar entropy, volume and enthalpy,
respectively. This corresponds to the phase t-ansformation x—f at the equilibrium
temperature, T,,.

For a transition of the second order, where As =0 and Av =0, the term As/Av
is indefinite. It, however, can be determined by L’Hopital’s rule to yield Ehren-

fest’s14-17 equations
P
P _ A% andjor 4P . 8% (1.35)
dT  TuAa dT A,

where Az, AJ; and Ac, are differences in the volume expansion coefficient, x, the
isothermal compressibility, ¥, and the molar heat capacity, c,, of both phases,
respectively. These quantities are defined by the relations:

Y

x=1 a_v) ) J€T=(6—V and cpz(fﬁ. (1.36)
v \oT/r OP/r oT /-

In most cases, the study of phase transitions is based on the direct investigation of
conditions under which different phases can exist in equilibrium. Equations (1.34)
and (1.35) enable the interpolation and/or the extrapolation of the changes in 7 and
P and the direct calculation of the quantities, A/, As and Ac. The measurement of the
values, Ah, As and Ar, raakes possible the construction of phase diagrams.

There is an extensive literature dealing with the individual types of tran-
formations; they are polymorphic transitions of crystals'®, order—disorder trans-
formations'®, fusion??, transformation of glasses?!-22, sublimation?32%, and
magnetic?* and/or ferroelectric?®-?7 transitions.

A similar situation is met through the investigation of phase diagrams in two-
component systems®. For the coexistence of crystals of pure component (A) with an
ideal solution of two components, A and B, eqn. (1.10) yields

fa=0,dP—5,dT+RTdInx, =L dP—s dT=p} (1.37)

where &, and 5, are the partial molar volume and the entropy of the component A in
solution, respectively; pl, ¢} and s} are the chemical potential, the molar volume
and the entropy of the pure crystalline component, A, respectively.
If P = a constant, then

dlnx, 35.—sk _Ah, (1.38)

a7 RT RT?

where Ah, is the molar change of enthalpy corresponding to the melting of the
component A. This value can be calculated from a plot of In x, against (}/7) as
determined experimentally (see direct investigation of phase equilibria). From the
value of Afi, determined calorimetrically, the ideal solubility of A can be calculated.
This indirect method makes possible the construction of a complete phase diagram
from information concerning the behavior of solutions, temperatures, and enthalpy
changes which correspond to the melting of the pure component.
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The change of free energy associated with the formation of one mole of
solution from the pure components A and B (as given by eqn. (1.24)) can be rewritten
in the form
AG* = AHM—TAS™

where AH™ and AS™ are the changes of enthalpy and entropy, respectively. The
expression, — TAS™, is always negative. If AH™ is also negative then AG™ is negative

(1.39)

+
f
aH"
; -

0 0 aG

-TaS™ -Tas™

aHY

- aG” _

———Xs —_— Xa

=

Fig. 1.1. Thermodynamic behavior of binary solutions. {a) Negative enthalpy of mixing and (b)
positive enthalpy of mixing.

Fig. 1.2. Binary system with limited solubility. (a) Plot of free energy of mixing versus composition
for temperature T;, and (b) phase diagram—full line boundaries miscibility gap, dashed line
(spinodal) boundaries unstable region.
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Fig. 1.3. Binary system with perfect miscibility in both solid and liquid states. (a) Plot of free encrgy
of mixinz versus composition for temperature 7, and (b) phase diagram.

for all compositions (see Fig. 1.1a). However, if AHM>0, then the AHM term
becomes, at lower temperatures, mofe important than the —7AS™ term. Conse-
quently, the curve AG™ versus xg tends to be concave upward over a range of com-
position and the complete curve takes the shape shown in Fig. 1.1b. Thus, a system
in which the composition fall¢ :n tne interval between x; and x, (Fig. 1.2a), is
unstable. Such a system then *2nds to separate into two phases represented by the
lowest free energy configuration. For the system of composition x° (Fig. 1.2), the
lowest free energy configuration is given by N, laying on the common tangent to the
curve AG™. This stable configuration N consists of two sclutions; one for the com-
position x, and the other {or the composition x,. The common tangent method can
be applied to determine the composition of coexisting phases at the different tempera-
tures as well as for the construction of the sntire phase diagram (see Fig. 1.2b).

For the numerical calculation?3-3! of equilibrium compositions (x; and x,) at
different temperatures, the solution of the system of equations

Ua(xy, TY=pp(x2, T)
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and (1.40)
pglxy, T)=pg(x,. T)

describing the equilibnum conditions, is more practical. This method is convenient
when using computers.

In the case of a binary svstem with an unlimited solubility of both components
in both liquid and solid phases, the calculation is analogous. The free energy of
mixing of the pure components to solid and liquid solutions are referred to by an
analogous reference state. In Fig. 1.3, pure solid A, and pure liquid B, at a given
temperature, T, are adopted as the standard state. For liquid solutions,

AG! = RT [xInx+(1 —x) In (1 —x)]+ (1 —x) AG, +AG} (1.41)
and likewise for the solid solutions

AG} = RT [xInx+(1 —x) In (1 —x)}—xAGg, +AGE (1.42)

R A -o‘-l..—.

} . s
tne c UlllpUllCllL D, dllu L\UA dllu L‘UBT arec tic clidiyg

[8 1
of molar free energy of melting whlch correspond to the temperature T. On the

e A e a o T Y T __a

&

AG,, = AH,[1—(T/T)] (1.43)

vihere T, 1s the normal melting point of component A.

The shz.pe cf AGY and AGM as functions of composition, are shown in Fig. 1.3.
The common tangent then gives the composition of solid and liquid solutions which
are in equilibriun under a given temperature. By repeating this procedure for a series
of temperaiurss, the whole phase diagram can be obtained.

For nusnerical calculations (particularly using computers), the solution of the
equations that fciiow is employed:

PR TY — 22 £~ T
HAg\Agy L ] = Ba\ALy 1) (1 44)
sz(xsr 7-) =”B;(xlr 7)

The same methods can be used for other types of the phase diagram calculations in
binary>®-?? as well as in muiticomponent systems>%-32 -
If T = constant, eqn. (1.35) reduces to
= +
dinx, _Ba—la _ Av, (1.45)

dF RT RT

aAw & AN S

where Az, is the molar change of volume corresponding to thc melting of pure
component A. Equation (1.37) permits the calculation of the volume change, Az,,
corresponding to the melting of component A (see direct investigation of phase

equilibria) or the change of solubility of A if A, is known as a function of pressure.



351

A chemical reaction
ViIA+VIA L+ L o= vASH VAL L. (1.46)

which takes place in a homogeneous system can be described by the more compact
relationship

0=Yv;4; (1.47)
J

where the stoichiometric coefficients, v;, are positive for products and negative for
reactants. The change in mole number of each component is related to its stoichio-
metric cocficient by
dN dN
1 Y2 . _ge (1.48)

Vi V2

where & is a reaction parameter commonly called the “extent of reaction”. Em-
ploying this notation, the free energy change in a system which arises from the
reaction (at constant temperature and pressure) is given by

7 J

or
dG -
('EE)T , = ; }lej = AG. (1.50)

The symbtol AG represents the change of total free energy per uait of reaction carried
out under constant 7 and P. The condition of equilibrium (eqn. (1.12)} re4aircs that

AG = Zﬂjvj=o. (1.51)
i

AG is negative for any natural process
ie. AG<O. (1.52)

Equation (1.51) may be expressed in terms of activities, defined by the relation
(eqn. (1.21))

p;=p;+RTIna;

(1 is the chemical potential of the j-th component in the reference state). Equa-
tion (1.50) then has the form

AG = Y v;p;+RTInIl; a}
i
= AG°+RTInII; a}* (1.53)

which is often called the Van’t Hoff reaction isotherm. Using eqn. (1.51), the equilib-
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rium state is described as
AG’ = —RTIn H;(a}")eq = —RTIn K;. (1.54)

The standard change of free enerzv, AG®, represents the finite change in G associated
with the transformation of the reactants to the products according to the stoichio-
metry, where AZ = 1, and where all components are in their standard states. From the
value of AG®, the equilibrium constant, K,, can be calculated. The composition at
equilibriuin can be determined from the known value of the equilibrium constant, K,
and the initial composition of the system in question. On the other hand, if the
equilibrium constant is directly determined by experimental measurement the
corresponding value of AG® may be calculated. If multiple simultaneous reactions
occur in the system, then for each of them the equilibrium criterion (eqn. (1.54)
bolds

AG? - —RTIn K., (1.55)

and the extent of k-th reaction (eqn. (1.48)) can be defined. The equilibrium composi-
tion in the system is then calculated by mecans of solution of a set of equations
teqn. (1.35)). A computer method for this is described by Zeleznik and Gordon?3!.

I.5. Thermodynamics of interfaces

In the preceding part, the siate of the system was considered to be only dependent
on temperature, pressure and composition. In a real case, the surface and the curvature
of the phase boundaries are also state determining, particularly if a new phase is
formed. Gibbs33 has shown that for a system composed of two phases, « and f, and
separated by a surface of the area. 4, the curvatures of which are ¢; and ¢,, the total
change in energy, U, associated with the displaceinent of the separating boundary is
given by the equation

dU = TdS—P*dV*—P"dV? + ) p;dN;+o0dA+¢,dc,+@,dc; (1.56)
J
where ¢ is the interface tension, ¢, and ¢, are the curvature coefficients, and P* and
P? are the pressures in phases x and B, respectively.

Such a system is considered where the separating surface has a curvature which
permits the deletion of terms, ¢, d."; and ¢,dc,, then

dU = TéS—P*dV*—P?’dv? + Y p;dN;+cdA (1.57)
J
If the phase boundary is displaced by an amount dw perpendicular to the interface,

.4, while ho'ding the total volume, energy, and composition constant, then d¥* = A du,
dV? = — A duw and d4 = [(}/r;)—(1/r)]4 dw, and

Pop = (i + i) - (1.59)
ry r
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where r; and r, are the main radii of curvature. For a spherical surface, r; =r, =r,
and P*— P? =2g/r. An exact analysis has been given in moncgraphs3++33,
When equilibrium conditions are assumed for a spherical particle of phase f
within phase « in a single component system, then p? = u*, and
20
o

p—p (1.59)

8 ==
=~}

r
where pf, pf and p* are chemical potentials of a particle of phase § of radius r, with
flat surface (r = oo) and of buik phase z, respectively. and ¢# is the molar volume of
phase . For the case where phase z is a liquid and phase f is an ideal gas, then

P 2%

n— =
Py RTr
where P, is the saturated partial pressurz of phase g (r = <o) at a given temperature, 7;
P is the equilibrium pressure in the whole system, and R is the gas constant.
By analogy, for 2 multicomponent system it is valid that for each component

(1.60)

_g 20
w,—pl; =17 - (1.61)

where L’Jj. is the partial molar volume of the j-th component in phase §.

In the case of an isotropic solid phase, B, and a fluid phase, «, the above
relations are retained for spherical particles35. Actually, the interfacial energy on the
boundary solid-fluid is dependent on the crystzllographic orientation. A detailed
analysis can be found in refs. 34-36.

In a multicomponent system which is composed of two phases separated by
interface A, it is valid that

Y Ndp;+Ade = 0. (1.62)
i

This is an analogy of the Gibbs-Duhem relations, where N is the number of
molecules of j-th component present in the surface layer separating the phases.
Relating this amount to the surface area unit of the phase boundary the surface
concentration, I';, can be defined as I'; = Nj/A. For zero surface concentration of one
component in a two component liquid system, the surface concentration of the second
component, I',, can be described by the Gibbs adsorption isotherm :
r,=-29 (1.64)
RT dc,
where ¢, is the concentration in the bulk liquid which means that the interface layer
is enriched by the second component in order to decrease the interphase energy,

(do/dc, <0).
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