
i. HETEROGENEOUS EQUILIBRIA 

1.1. Gen;:glization of equilibrium conditions 

Thermodynamics is perhaps the most general discipline developed for direct 

application to physico-chernical systems. Classical :hermodynamics deafs with the 

macroscopical properties of mailer in bulk and -2 not concerned with the atomic and 
molecular structure. All information about a system is contained in the equation’ 

s= S(U, v, IV, . . . ivj) (!.I) 

where the entropy, S, is a function of extensive parameters, the internal ener_q, U, 
the voIumt, V and the mole number of the chemical components, Nj. Equation (1.1) 
could also be soIved uniqueIy for U as 

u = iJ(S, v, N, - -. q_ (1.2) 

This holds al1 the necessary information about the system in questicn as weli. Such an 
approach was found useful in tr le case that the phenomena of mechanics and heat are 

discussed simultaneously. The application to chemical problems, however, requires 
another mathematical formalism. 

In the laboratory, intensive parameters are more easily measured and con- 

trolled than the extensive ones. Through the Legendre transforms* of the function U 
(see eqn (I-2)) of the extensiv-e variables are replaced by intensive ones. From ‘t&e 
experimental point of view the three following cases are the most important: 

I) For an isobaric system the state function, H, 

w= u-i-PV (1.3) 

called enthalpy is the partial I_&,oendre transform of U where the volume, V, is 

replaced by the pressure, P, as the independent variable 

H = H(S, P, N, . . _ A’,) (1.4) 

2) For the case of an isorheunal mechanicah’y isolated system the Helmholtz 

free energy, F, 

F=F(T, V, X, ___ Nj)= U-Z-S (1.5) 

is the most convenient and is a partial LZgendre transform of U replacing the entropy, 
S, by the temperature, r, as the independent variable. 

3) For an isothermal and isobaric swtsrr I another tigendre transform of U is 
advantageousIy assigned with the Gibbs free energy, G, 

G= G(T, P, Arl ___ Nj) = H-Z-S (l-6) 

as a partial Legendre transform of U which simultaneously replaces the entropy by 
the temperature and the volume by the pressure as the independent variables. 
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In an homogeneous system, the infinitesimal reversible chan_ge of the internal 

enerS>, L’, is given by 

(1.7) 

where par&I derivatives define the intensive parameters of temperature, T, pressure, 
P, and chemical potentials, pi, respectively. 

(1-S) 

Equation (1.7) can be written in the form called the Gibbs phenomenological relation 

dU = TdS-PdV; C ~idN,- (I-9) 
i 

Simifarly, for the other state functions the following relations hold: 

dH = TdSt VdPtZpidiVi 
dF = --SdT-PdV;Z~id~‘i 
dG = -SdT; VciPi&id;~i 

(1.10) 

The problem of classical thermodynamics becomes the determination of the 
equilibrium state of a system (the properties of which are independent of time)_ This 

problem is soived on the basis of the postulate that in an isolated (i.e., composite) 
system. the equilibrium value of any (unconstrained) internal parameters charac- 

terizing the state of the system corresponds to the maximum of entropy for the given 
energy content or, 

for L’= constant, dS = 0 and d’St0 (I.iIj 

The task of determining the equilibrium state is hence rcds-_ed to the pureIy mathema- 

tical problem of findins the entropy maximum (see eqn. l-l)_ 
AI1 natural process taking place in an isolated system tend towards equili- 

brium_ If a system attains equilibrium. then any conceivable change in it must be 
reversibIe_ This puts the equiiibrium conditions into various forms, each of general 
\raIidity, e.g._ for an isothermal and isobaric system 

dG=O and d’G>O (T= constant, P = constant). (1.12) 

Likewise, for constant volume and temperature the Helmholtz free energy becomes a 
Ininimum, dF= 0. and d’F>O. The second derivative expresses the conditions of the 

stability of the equilibrium state. In the case the equilibrium conditions are fulfilled 

for some different values of G and F than those for their lowest values compatible 

with the given external conditions, the system is considered to be in a merastable 

equilibritim stare. 

The advantage of a thermodynamic approach to the study of systems behavior 
resuks, in the first place, from the nature of the state functions U, S, H, F and G. 
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AIthough the absolute values of these functions are nof-known, it is easy to determine 
their relative changes. The choice of an appropriate standard state permits the use of’ 

the functions and their tabulation. Because the change of state function is not de- 
pendent on the path along which the systems move from the initial to the fial state, 
thermodynamic considerations facilitate the determination of the most suitable way 
for the experimental measurement of data characterizing equilibria_ 

The method of classical thermodynamics has a very broad field of application3*4. 
The most important topics in chemistry and chemical engineering areas involve: 

I) Quantitative description of the properties of homogeneous systems (pure 
substances, mixtures and solutions). 

9-) Prediction of the ener_e change accompanying a process in question 
(chemical reaction, phase change). 

3) Prediction of the conditions under which various substances or phases exist 
in equilibrium. 

4) Prediction of the direction of chemicai reactions or phase changes under 
certain specified conditions. 

1.2. TImn~od~warnic properries of subs2ances 

For most physico-chemical cakulationssS9 it is necessary to know both the 
properties of chemical individuals, mixtures, and solutions, as well as their dependence 
on the state variables such as pressure, temperature and composition_ The behavior 

of perfect gases is expressed by the state equation for an ideal gas 

PV=nRT (1.13) 

where n is the number of moles and R is the gas constant. However, for real gases 
there exist various empirical relations”*6. For chemical cakulations, particuIariy in 
the case of equiIibria, it is convenient to employ the chemical potential, p, expressed 
by means of the function called fugacity,f(Lewis et al.)’ 

dp = RTd Inf- (1.14) 

Fugacity, in other words, is a thermodynamic effective pressure and is defined by the 
equation, VdP = nRTd Inf, and by the limit 

lim f = 1 
P--O P 

(T= constant). 

it becomes equal to the pressure onIy at very Iow pressures 
real gases, it can be caIculated from experimental P-V-T 

term is the fugacity coefficient, V, given by the equation, 

(1.15) 

(nearly perfect gas). For 
data. A frequentiy used 

i 

(1.16) f;lP= v. 
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For perfect _SJ it is not difficult to derive the changes of the state functions, H, S, G, 

and F. \v-ith the temperature and/or pressure2.6. For real gases, it is sufficient to 

dlttermine mcreiy the deviation from the perfect state. 

More important is the state behavior of gaseous mixtures_ Besides the total 

pressure and temperature. it is necessary to consider also the composition, the value 

of which is commonly expressed by the mole fractions, _xj _ In order to predict mixture 

behavior from the behavior of pure components, there are two approaches: 

and 

(1.17) 

(6) Amagate's fax- 

(1.18) 

EnthaIpy. entropy and heat capacity of such mixtures are also determined by 

approximate methods. as shown by Heusen and Watson’. 

The fugacity of a component, j_ in a gaseous mixture is given by the Lewis 

reMon’ 

fj = j-i’ sj (1.19) 

where _rj is the mole fraction ofj-th component and 6 is the fugacity of the pure 

oomponent under th, p toiai pressure of the mixture whose state is adopted as the 

standard one. The relation beween the chemical potentiar ofj-th component and its 

fug; - ity is &-en by equation 

d.Kj= RTln fi ( 1.20) 

or in relation to a standard state (‘) 

pi-p; = RT In_$fT = RT In aj (1.21) 

wheref; is the fugacity in the referent, m state adopted and aj is the activity (Lewis 

et al_‘)_ The standard state is chosen in such a way that the resulting numerical values 

of activities corresponds to partial pressures or concentrations for a perfect system. 
For _gses, unit fugacity ui = I ) is chosen for the standard state so that the component 

activ-iry is equal to the fugacity which, for a perfect mixture [see eqns. (1.15) and 

(l-19)] is equal to the partial pressure. 

For condensed systems, a pure component at the temperature and pressure of the 

system is chosen for the standard state; the component activity is then equal to the 

mole fraction. Generally it is valid that 

(1.22) 
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where xi is the mole fraction and i;- is the activity coefficient_ The numerical value of 

~l)~ is a matter of the standard state convention. Aqueous solutions are discussed by 

Lewis et al.‘, while organic substances are described by Hildebrand et al. I’. The 

problem of ionic melts and solid solution ’ r are discussed by T&mpkin ’ ‘_ Driessens’ 3, 

HoIbaLJ and others”_ 

Thermodynamic quantities, which characterize a given mixture, can be cal- 

culated from the free ener_gy of mixing, AG”, which is defined as the change of free 

ener~gy associated with the formation of a solution from pure components at constant 

temperature and pressure 

AGM = c xipj- x xi& _ (1.23) 
j i 

On combining eqns. (1.21) and (1.22) with (1.23) we obtain 

(1.24) 

where the first term on the right-hand side represents the free enerm of mixing of a 

perfect solution and the second term its non-ideality which is often designated as the 

excess free ener,o, AGE. The dependence of AGE on the composition can be described 

by a power series 

AGE = x(1-x) z a,xm 
m=O 

(1.25) 

the coefficients of which must be determined experimentaliy’O. 

1.3. Energy balance 

One of the basic problems often met in practice is the determination of heat 

liberated and/or absorbed during a reaction, the measurement of which is usually 

made under constant pressure. Such a calculation requires a knowledge’*’ of: 

(a) The specific heats of participating substances, the temperature function of 

which is usuahy given by 

Cp=al +a, T-l-a, T’ (1.26) 

where a1 , a2 and a3 are constants to be determined experimentally. 

(6) The enthalpy change of substances under consideration at the temperature 

of the phase transition_ 

(c) The enthaIpy changes associated with the chemical reactions given for the 

standard state, usually chosen as 25C and I atm. The standard enthalpy of formation, 

expressing the enthalpy change which accompanies the formation of one mole of 

resulting compound from its eIements under standard conditions, is tabulated_ 



The tota enthalpy change for a reaction, AH:, is given by the law of Hess 

4H,J=C sj~jOrodPsr-CYj4HfOjrroun~ 
(1.27) 

i j 

where vi is rhe stoichiometric coeEcient of the j-th component and AHr> is the 

standard enthaipy of formation of the j-th compcnent. For recalculation of the 

enthalpy to another temperature, Kirchoff’s Iaw is used 

If an exothermic reaction is carried out adiabatically, the system may achieve a 

nukmum temperature, the value of which can be calculated under the condition that 

all the heat liberated is consumed to heat up the product 

(I -29) 

where T, is the initial temperature of the system in question, AH;’ is the enthalpy 

change and C, is the specific heat of the product M-hich has the mass, m. 

I.4_ IZermodynamicr: of phare changes and chemical reacrions 

When eqns. (I _ IO) and (I _ 12) are applied to a homogeneous system at constant 

temperature and pressure, the conditions of equilibrium are 

(1.30) 

For a system composed of z-phases 

dG =x&d& 
= i 

(1.31) 

If no chemical reactions occurs, the total amount of each component in a closed 

system remains constant so that 

C (d~Vj)= = 0 _ (1.32) 
J 

T&s gives the general condition for phase equihbrium 

j.f; =j+Jf~ = ___Iri’=pi_ (1.33) 

For the coexistence of two phases in a single-component system, eqn. (1.33) rest&s in 

the Clapeyron equation 

dP 9-9 AS Ah -_=- 
dT 2-r= =z =- Tq Ao 

(1-W 
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where As, AU and A/t are the changes of moIar entropy, volume and enthalpy, 
respectively_ This corresponds to the phase t-ansformation z-*/I at the equilibrium 
temperature, TCs _ 

For a transition of the second order, where As = 0 and Ar; = 0, the term As/An 
is indefinite. It, however, can be determined by L’Hopital’s rule to yield Ehren- 
fest’s16*1 ’ equations 

dP _ 4 dP Ar 

dr - l-CA% 
and/or - = - 

dT AX, 
(l-35) 

where AZ, AX& and Acp are differences in the volume expansion coefficient, x, the 
isothermal compressibility, X,, and the molar heat capacity, cp, of both phases, 
respectively. These quantities are defined by the relations: 

7 
x,= av 0 and 

aP T 
(1.36) 

In most cases, the study of phase transitions is based on the direct investigation of 
conditions under which different phases can exist in equilibrium. Equations (1.34) 
and (I -35) enable the interpoiation and/or the extrapolation of the changes in T and 
P and the direct caIcuIztion of the quantities, A./z, As and AC. The measurement of the 
values, Ah, A.s and AZ:, niakes possible the construction of phase diagrams. 

There is an extensive literature dealing with the individual types of tran- 

formations; they are polymorphic transitions of crystals”, order-disorder trans- 
formations 19, fusion”, transformation of glasses21*t2, subiimation23-2”, and 

magnetic2’ and/or ferroelectric26*27 transitions. 
A similar situation is met through the investigation of phase diagrams in two- 

component systems’. For the coexistence of crystals of pure component (A) with an 

ideal solution of two components, A and B, eqn. (1. IO) yields 

p, = 6,,dP-SAdTiRTd In x, = n:dP-sIdT= pi (1.37) 

where ij* and S* are the partial molar voIume and the entropy of the component A in 
solution, respectively; pf;, ~1 and sl are the chemical potential, the molar volume 

and the entropy of the pure crystalline component, A, respectively. 
If P = a constant, then 

d In x, s, - s: Ah, (1.38j -=-=- 
dT RT RT’ 

where Nz* is the molar change of enthalpy corresponding to the melting of the 

component A. This value can be calculated from a pIot of In xA against (l/T) as 

determined experimentally (see direct investigation of phase equilibria). From the 
value of Ah,, determined calorimetricahy, the ideal solubility of A can be calculated. 

This indirect method makes possible the construction of a complete phase diagram 
from information concerning the behavior of solutions, temperatures, and enthalpy 
changes which correspond to the mehing of the pure component. 
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The change of free ener_e associated with the formation of one moIe of 

solution from the pure components A and B (as given by eqn. (1.24)) can be rewritten 

in the form 

AG’f = AH” - J-AS-\’ (1.39) 

where ,4H” and AS” are the changes of enthalpy and entropy, respectiveiy. The 

expression, - TAS”, is always negative_ If AH” is also negative then AG’* is negative 

---X3 
.=: 

Fig_ l-1. Thermodynamic behavior of binary solutions. (a) Negative enthalpy of mixing and (b) 
positiw cnthaipq’ of mking 

AGU 

+ 

G 

T=F 

/\ 
’ b 1 1 

Xi X3 X^ x; XT 

_. ._ 

IFig_ 1.L Binary s>sJem with limited solubility. (a) Plot of free energy of mixing versus composition 
tbr temperature T1, and (b) phase diagram-full Iine boundaries miscibility gap, dashed line 
(:spinodal) boundarics unstable region- 
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A --is B 

Fig. 1.3. Binary system with perfect miscibility in both solid and liquid states. (a) Plot of free enerw 
of mking versus composition for temperature Ti, and (b) phase diagram. 

for all compositions (see Fig. I _ la)_ However, if AH”> 0, then the AHM term 

becomes, at lower temperatures, more important than the - TAS” term. Conse- 
quently, the curve AG” versus _r, tends to be concave upward over a range of com- 
position and the complete curve takes the shape showm in Fig. I.1 b. Thus, a system 
in which the composition fall: !.I the interval between x1 and xt (Fig. 1.24, is 
unstable. Such a system then :.:nds to separate into two phases represented by the 
lowest free energy configuration. For the system of composition x0 (Fig. l-2), the 
lowest free energy configuration is given by N, laying on the common tangent to the 
curve AG”_ This stable configuration N consists of two sclutions; one for the com- 
position xz and the other for the composition x2. The common tangent method can 
be apphed to determine the composition of coexisting phases at the different tempera- 
tures as well as for the construction of the entire phzse diagmm (see Fig. I-Lb). 

For the numerical calculation 28-31 of equilibrium compositions (x1 and xz) at 
different temperatures, the solution of the system of equations 

Pa(X, I n = P*(Xz, -T) 
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and (I-@) 

.u,(x,, T)=P,(xz, T) 

describing the equilibrium conditions, is more practical_ This method is convenient 
vf.hen using computers. 

In the case of a binary system with an unlimited solubility of both components 
in both liquid and solid phases, the calculation is analogous. The free ener_gy of 
mixing of the pure components to solid and liquid solutions are referred to by an 
analogous reference state_ In Fig. 1.3, pure solid A, and pure liquid B, at a given 
temperature, r, are adopted as the standard state. For liquid soWions, 

AGY = RS[xInx;(l -x) In (1 -x)]+(l -x) AG++AGF (1.41) 

and likes*ise for the soiid solutions 

AGZ = RT[xInxt(l -x) In (1 -x)-j-xAG,iAGF (1.42) 

where x is the mole fraction of the component B, and AC,, and AGu, are the changes 
of molar free ener_v of melting which correspond to the temperature, X On the 
supposition that the standard enthalpy of melting, AH,, is temperature independent, 
the following approximate formuIa for the AG,,, calculation may be used: 

(1.43) 

where TA is the normal melting point of component A. 
The slupe cf AGZ’ and dGy as functions of composition, are shown in Fig_ 1.3. 

The commorr tangent then gives the composition of solid and liquid sohttions which 
are in equilibrium under a given temperature. By repeating this procedure for a series 
of temperatures, lhe whole phase diagram can bc obtained. 

For nurneric~l calculations fparticularly using computers), the so!ution of the 
equations that fsi;ow is empIoyed: 

The same methods can be used for other types of the phase diagram calculations in 

binary”-” as well as in multicomponent systems30’32_ 
If T= constant, eqn_ (I-35) reduces to 

dInx, CA-~: AFT --=- -=- 
ti RT RT 

(1.45) 

where AC* is the molar change of voIume corresponding to the melting of pure 
component A. Equation (1.37) permits the calculation of the volume change, ArA, 
corresponding to the melting of component A (see direct investigation of phase 
equilibria) or the change of solubility of A if AE* is known as a Cnction of pressure. 
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A chemical reaction 

which takes place 

reIationship 

0 = c VjAj 
j 

in a homogeneous system can be described by the more compact 

(1.47) 

where the stoichiometric coefficients, vi, are positive for products and negative for 

reactants. The change in mole number of each component is related to its stoichio- 

metric cozfficient by 

dN, dN2 - = - = ___ = dc (1.48) 
v I vt 

where < is a reaction parameter commonly called the “extent of reaction”. Em- 

ploying this notation, the free energy change in a system which arises from the 

reaction (at constant temperature and pressure) is given by 

dG = c pjdiVj = c pjvjd5 

or 

dG 0 = C~jvj=AG. 
djT.P i 

(1.49) 

(i.50) 

The symbol AG represents the change of total free ener,ay per uait of reaction carried 

out under constant Tand P_ The condition of equilibrium (eqn. (1.12)) re,dircs that 

AG = C~j~~j=Oo. (1.51) 
i 

AG is negative for any natural process 

i.e. AGtO. (I 52) 

Equation (1.51) may be expressed in terms of activities, defined by the relation 

(eqn. (1.21)) 

pi = & + RTln aj 

Q is the chemical potential of the j-th component in the reference state). Equa- 

fin (I SO) then has the form 

AG = C vj$i-RTfn Xii a: 
i 

= AG”tRTIn IZj a’ (1.53) 

which is often called the Van? Hoff reaction isotherm. Using eqn. (I Sl), the equilib- 
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rium state is described as 

AG’ = --RTln 17, (aFjcs = --RTln K,. (I 3) 

The standard change of free ener_zy, AG’, represents the finite change in G associated 
with the transformation of the reactants to the products according to the stoichio- 
metry, where A< = I, and where all components are in their standard states. From the 
\-alue of AC, the equilibrium constant, Kx, can be calculated_ The composition at 
equi1ibriu.n can be determined from the known value of the equilibrium constant, K,, 
and the initial composition of the system in question. On the other hand, if the 
equilibrium constant is directly determined by experimental measurement the 
correspondin, = value of AC” may be calculated_ If multiple simultaneous reactions 
occur in the system, then for each of the-m the equilibrium criterion (eqn. (1.54) 
holds 

AG: =- --RTln K, (1.55) 

and the extent of Xr-th reaction (eqn. (I -48)) can be defined. The equilibrium composi- 
tion in the system is then calculated by means of solution of a set of equations 
!eqn. (1.55)). X computer method for this is described by Zeleznik and Gordon”. 

17.5_ lXernrodynanric.s of interfaces 

In the preceding part, the siate of the system was considered to be only dependent 
on temperature, pressure and composition. In a real case, the surface and the curvature 
of the phase boundaries are also state determining, particularly if a new phase is 
formed. Gibbs33 has shown that for a system composed of two phases, x and /I, and 
separated by a surface of the area, -4, the curvatures of which are c1 and cl?, the total 
change in ener_@, U, associated with the displacement of the separating boundary is 
given by the equation 

dLi = 1-dS-P=dV=---dd+ i c j+d&iadA+cp,dc, +qzdc, 
i 

(l-56) 

where c is the interface tension, 9 1 and r,~~ are the curvature coefficients, and P’ and 
Pp are the pressures in phases z and /3, respectively. 

Such a system is considered where the separating surface has a curvature which 
permits the deletion of terms, p1 CL-, and (~=dc~, then 

dU = TC.S-~dV’-P3dVB t C pidNi+GdA 
i 

(1.57) 

Ef the phase boundary is displaced by an amount du; perpendicular to the interface, 
-4, while ho’ding the total volume, ener_q, and composition constant, then d V’ = A du;, 
dVB = --/i drc and dA = [(l/r,)-(l,‘rz)]_4 dul, and 

(1.58) 
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where rl and r2 are the main radii of curvature. For a spherical surface, rL = rZ = r, 
and P’ --PB = 2c/r. An exact analysis has been given in monc_rraphs3*V35_ 

When equilibrium conditions are assumed for a spherical particle of phase fi 
within phase a in a single component system, then &z = $, and 

(1.59) 

where & ~2 and $ are chemical potentials of a particle of phase j3 of radius r, with 

flat surface (r = m) and of buik phase r, respectively. and cB is the moiar volume of 
phase fi. For the case where phase z is a liquid and phase /3 is an ideal gas, then 

2tJo In$=- 
0 RTr 

u-w 

where PO is the saturated partial pressure of phase /3 (r = 30) at a given temperature, T; 
P is the equilibrium pressure in the whoie system, and R is rhe gas constant_ 

By anaIogy, for a multicomponent system it is valid that for each component 

(1.61) 

where L$ is the partial molar volume of thej-th component in phase j?_ 
In the case of an isotropic solid phase, /3, and a Ruid phase, CC, the above 

relations are retained for sphericai particles 3s Actualty, the inter-facial ener~gy on the . 

boundary soiid-fluid is dependent on the crystailographic orientation. A detailed 
analysis can be found in refs. 34-36_ 

In a multicomponent system which is composed of two phases separated by 
interface /i, it is vaIid that 

c N,“dCci;Ado = 0. 
i 

This is an anaIo_gy of the Gibbs-Duhem relations, where NT is the 
molecuies of 11th component present in the surface layer separating 
Relating this amount to the surface area unit of the phase boundary 

number of 
the phases. 
the surface 

concentration, rj, can be defined as rj = NJ/A. For zero surface concentration of one 
component in a two component liquid system, the surface concentration of the second 
component, r2, can be described by the Gibbs adsorption isotherm i 

(1.62) 

c2 da 
r2=---- 

RT dc, 

where c-, is the concentration in the bulk Iiquid which means that the interface layer 
is enriched by the second component in order to decrease the interphase energy, 

(dc/dc, to). 
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