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3. THEORY OF THE KINETICS AND MECHANISM OF
NON-CATALYTIC HETEROGENEOUS PROCESSES

3.1. Types of processes

3.1.1. Classification of processes

The classification of non-catalytic heterogeneous processes is compiicated and
may reflect rather different approaches!=®. When a homogeneous system consists of
only one phase to transform, the following types of processes may be distinguished, as
shown in Table 3.1. A more complicated case arises for the tvpe: A—B+C. Such a
system may be limited to the case of only one solid initial phase!~3, as given for
some typical examples in Table 3.2. If the initial system is composed of two phases,
containing two reacting components, the resulting processes are described by
equations of the type, A+B — C andf/or A+B — C+ D (see Table 3.3).

This classification of heterogeneous processes, which takes into account the
number and state of the phases involved, gives little information about their physical
nature. A more adequate classification can be deduced from the point of view of the
mechanism of the processes!™®. The term “mechanism™ describes the path along
which the process advances, i.e., the progr:ssive succession of individual intermediate
states.

TABLE 3.1

CLASSIFICATION OF PHASE TRANSFORMATIONS IN ONE COMPONENT
SYSTEMS

(reactant) A B (product)

(liquid) L evaporation . G (gas)

sublimation

solidification

(solid) S polymorphic S (solil)
transformation /
condensation
melting \
(gas) G - L (liquid)

condensation
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TABLE 3.2

TYPES OF SOLID-STATE REACTIONS STARTING WITH ONE SOLID PHASE

A—B+C Type examples
Thermal or photochemical decompositions
S+S 3AuCl — AuCl; +2Au
HegCl. — Hg+HgCi-
S+L Incongruent melting
S+G Thermal or photochemical decompositions
CaCl; — Cal+CO0;
2AgN;—2Ag+3N;
G+G Thermal decomposition and dissociation
NH,Cl— NH;+HCI
G+L Melting with decomposition
TABLE 3.3
TYPES OF SOLID-STATE REACTIONS STARTING WITH TWO SOLID PHASES
A+B—C Type examples
S Alloy formation
Additive powder reaciions
2Agl+Hgl; = Ag:Hgl,
MgO+Al.0; = MgAlL.O,
L Melting of binary cutectics
G Sublirzation of binary eutectics

Substitutional powder reaction
Cuy,y +.48Cly — CuCliy +Agw

BaCO; 5+ Fe20ia¢,) —> BaFe; 04 + CO2¢p

Crystailization in binary system {(except cutectic or peritectic com-

positions)

In the classification of non-catalytic heterogeneous processes from this view-
poini, two groups are generally considered:
1) Processes associated with the creation of a phase-boundary (actual formation
of a heterogeneous system).

2) Processes proceeding entirely in a heterogeneous system (motion of a
phase-boundary).
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The heterogeneous reaction occurs on the phase-boundarv and the overall process
involves at least three different steps:

1) Transport of the reactants to the phase-boundary.

2) Reaction at the phase-boundary, i.e., the formation of a new phase and
accomodation of atoms into the growing lattice.

3) Tiansport of the products away from the phase-boundary.

These principles are reflected in the more detailed scheme shown in Fig. 3.4.

In this description, only a single particle of the rcacting system is considered.
In the case of two reacting substances, a very fine continuous phase of a second
substance surrounding the particle of the first one may be assumed and thus a similar
model can be coastructed.

3.1.2. Approach to the study of processes

The first step is to define the rate of the process, r. in homogeneous systems™*-*
the rate of a reaction is defined as the number of moles, n;, of the initial substance
reacting in the volume, V, per unit of time, ¢, or

1  dn
r=—x—.
Vv dt
For heterogeneous systems the rate of a process is given by the equation
F 1 v dl/; 772 1N
rFr=—X (2-1)
V, dt
avbhore I fo etlhio 2raliicen O el e e o tiees 2 a3 IS ic thna Genl e doent sr~tecrvan
WIICIT Fp IO LIIT VOUIULIIC Ul UIC piyuulte 1 UlsIc & aliv r x 13 LI 1nial prouauct ° uic
attained at the end of the reaction. The ratio
1=VJiV, (3.2)

is called the fraction decomposed (or fractional conversion or degree of reaction) and
falls into the normalized range of O tc 1. The rate of the process is a function of para-
meters ac_cribing the conditions of the process studied: the goal of kinetics is to find
an analytical expression for it.

In general, when isothermal conditions are assumed, the kinetic equation has
the form

dx/dt = k(T) x f(2) 3.3)
where k(T) is the specific reaction rate and depends on temperature. Integrating
eqgn. (3.3) gives

"z

dz/f(z) = g(x) = K" (T)x1 3.9

JO

dx/f(x) =g(x) =k"(T)x 1t 3.4
or in explicit form as

n=k"(T)x h(1)

where g and b are functions depending on the mechanism of the process.



When studying heterogeneous processes different approaches may be used. If
an engineering exploitation of the process under certain conditions is the main
purpose of the study, a formal description of the kinetics is sufficient. Using this
formal description, f(x) in eqn. (3.3) has an analytical form describing the observed
experimental data with a sufficient accuracy. Such an approach is usually based on a
stoichiometric description of the process. The formal kinetic equation holds only for
the conditions investigated and any extrapolation of it is speculative. A detailed
investigation of the mechanism of the process leads to a kinetic equation that permits
a broader prediction of both the raie of the process and the optimal conditions of the
process realization. In this case, the function, f(x). in eqn. (3.3) is determined for a
particular model which describes the phenomena investigated as close as possible.
The selection of such a model requires a detailed investigation of the path of the
process from the macroscopic down to molecular dimensions. The deduction of the
mechanism and the kinetics of a process is not easy and requires a complex experi-
mental approach.

3.2. dctirated state corncept

It follows from the second law of thermodynamics that every isolated system
will approach an equilibrium state the properties of which are independent of time.
It 1s required that such a reaction rate must be positive in the direction along the
decrement of the system free energy and must reach a zero value at the instant of an
equilibrium. However, thermodynamics is unable to say anything about the time
required to attain equilibrium, the time-behavior of a system, or the configuration of
a system during the period of change. A unified theory making it possible to describe
processes close to their equilibrium state can be based on the thermodynamics of
irreversible processes using the classical equilibrium picture as a limiting condition.
However, the application of this te a relatively complex heterogeneous reactions has
not been developed as yet. These problems are in the domain of chemical kinetics

Erergy Activated
3 complex (A™)

Activalion free enthaipy
related to A

Iniiial

state(A) Driving force

] FEEAN

Final stale(B)
product)

Reaction
coordinate

Fig. 3.1. Energetic barrier for a prcecess.
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which is directly concerned with the description of a system under transition, the
properties of which are varying with time.

One of the most productive theories ir modern chemical kinetics is the
transition-state theorv’ which assumes that one of the intermediate states (the
transition state) is a quasi-equilibrium state having a unique value of thermo-
dynamic functions. This approach has led to establishing the unified theory of the
rates of reactions based on the work of Eyring” and Polanyi®. The necessary condition
for an atom (cor :nolecule) t > undergo a change is sufficient thermal energy to surmount
the energy barrier which livides the initial and the final states (see Fig. 3.1). The
important assumption is madz as to the concentration of atoms in the activated state
which are in equilibrium with the reactants. The overall reaction rate, r, is determined
by the rate of the decomposition of the complexes, 4*, to the products. Mathemati-
cally, this is written as

kT s PN
(3-2)

where &7/ is the Boltzman constant, f(c) is the function of reactant concentration
and K* is a kind of an equilibrium constant to characterize the equilibrium between
the concentration ¢f complexes and the reactants, out of the internal vibraiion
coordinate that corresponds to passage across the barrier. On approximating
-AG; = RT In K#, the specific rate constant, &, in eqn. (3.5), may bec expressed as

=_e AGRY _ kT | —AHX\
p\ RT )~

where AGZ, AS; and AH} are the free energy, entropy and enthalpy changes,
respectwely, associated with the activated complex formation. These quantities do not
refer to the same kind of standard state for the complex as in an ordinary reaction,
nevertheless, the use of these symbols ha; been of value in a closer understanding of
the reaction kinetics.

The experimental activation energy, E (dimension: cal/mole), is defined by the
relationship

E= RT*[d(In k)/d T} (3.7)

(3.6)

The theoretical interpretation of this experimental quantity, E, can be found through

e S e i 7 Y B A Y

the comparisor. of eqns. (3.6) and (3.7)
E = AH;+RT. (3-8)

systems, L'~ AT/*_L. RT, where ATI* is the increace in t

Ywaillio A3 L3I Q= A o SR S AL

the complex from the reactants.

The nreexnnnential factor
ifie preexponenual iactor

Z = kT/h exp (ASX/R) = v exp (ASX/R) (3.9)

7 (dimencion- sec” 1
Z (a1 sion: se€c )

A1aw-aa L

where R is the gas constant and v is the vibration frequency. It can be seen that the
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reaction rate is not determined by the activation energy only. If the complex formation
is accompanied by a large entropy increase the reaction rate is fast although the
value retarding the activation energy may be large also. Conversely, a decrease in the
activation entropy can dominate the reaction rate despite the low value of the
activation energy.

A more detailed expression for the preexponential factor, Z, can be found
from Zener's theory'! of diffusivity assuming the validity of the Arrhenius-type
equation

Z = Bal ®kv exp [—(AS,+AS,)/R] (3.10)

where a, iIs the Iattice parameter, B is a geometrical constant relating a4 to the jump
distance, € is a constant describing the random motions of defects, k is the trans-
mission coefficient, v is the frequency, and AS; and AS_, are the standard entropies of
formation and motion of the diffusing defect, respectively. Many theories have been
advanced in order to give a true meaning to the preexponential constant, Z'2*.
Generally, it includes many constants describing the initial state, geometry and pro-
perties of the sample. Unfortunately. such equations are usually of little value in
predicting reaction rates particularly for reactions involving solids. One of the
earliest attempts to treat quantitatively the rate of surface reactions, e.g., evaporation
and decomposition, was by Polanyi and Wigner®, but their results did not always
agree with experimental values.

The application of statistical thermodynamics to the equilibrium constant, K*,
can be express=d in terms of the partition functions of the reactants and the activated
complex and hence, the experimental reaction rate is theoretically predictable
through the equation

. . *
p=FT e _ETQ _&)=Zexp(_ﬁ) (3.11)
it h O \ kT

where O% is the complete partition function for the activated complex excluding that
for the reaction coordinate: where Q@ is the completz partition function for the
reactant, E, is the petential snergy (i.e., energy difference between the activated
complex glateau and the reaciants), and Z is the frequency factor. The complete
partition function can be expressed by the partial partition functions

t r rv
Q = flnnd.frot. Jvib.
where fioa.- fror. @and fi;,. are translational, rotational and vibrational partiticn

*Assuming an irreversible chemical process unaffected by transfers and geometrical factors in which
cach quantum of absorbed energy AE(>= N, /v) reacted with one surfaciat structural unit, Jerman
(Collect. Czech. Chem. Commun., 1973, in press) derived the following equations, assuming a zero-
order rate constant

E=RT+ N, hy

log Z=13.536+1og T+21og(E/R—T)—log M
where N, is the Avogad:o <onstant; A is the Planck constan': v is the frequency of oscillation
(= 10**sec~1); and Af is the number of structural specics ready to react at 1 m? of the crystal
interface (=5x 103 m~—2).
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functions, respectively, for *lie mobile groups of atoms. Mathematicaliv. the cal-
culation of these functions is carried out for every characteristic lattice vibration given
by the degrees of freedom, 7, r and r. of the molecule in the reactant and the complex.
This was actually calculated by Shannon® for reactions of the tvpe, A ;;s— B.1;a+ C s
and this procedure was shown in detail in the case of the first-order-like rate constant
for the decomposition of CaCO;. [t was shown that the value of Z for this un-
complicated case is usually one or two orders of magnitude of 10'2. Cordes!? also
attempted to extend the above treatment for bimolecular homogeneous-like reactions;
he introduced the idea that the partition function for the molecule in the solid state
can be approached through the partition function for the gaseous state of the same
energy (neglecting the sublimation energy), ie., Ouiia = firanst. fror. Ogas- Special cases
were distinguished as indicated by the different values® of the preexponential factors.
Z (Table 3.4):

I) There is no change in degree of rotational excitation between the reactants
and the complex both having completely free rotation.

2) The same as (1) but with completely restricted rotation.

3) The complex has more free conditions than the reactants which may occur
on a surface where the complex extends out of the surface giving a rotation parallel
to the surface (Shannon’s case).

4) The reactants are assumed to have completely free rotation while that for the
complex is highly restricted.

5) The reactants are in equilibrium with a surface adsorbed laver. The adsorbed

species on the surface react via the activated complex to give products.
As can be seen. the empirical first-order preexponential factors may vary from

TABLE 3.4

NUMERICAL SUMMARY OF THE PREEXPONENTIAL FACTORS AT 400K
(ACCORDING TO CORDES!?)

Preexponential factor (sec™ ')

Morniomolecular BimolecrLiar

A. Bulk decomposition throughout the solid

Case: 1 1013 -
2 1015 1016
3 1016 lol!
4 loiz lolo

B. Surface decomposition (for 10 mu particles)

Case: 1 ot -
2 101? 1012
3 1022 10:+
4 i0® 10°®
5 - 106
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about 10° to 10'® sec™!. The low factors would indicate a surface reaction or, if not
dependent on surface area, a “tight”™ complex. The high factors would then mark a
“loose” complex.

it is extremely difficult to theoretically predict the value of the activation
energy as there is no direct correlation between the ordinary thermodynamic quantities
and the height of energy barrier. Evans and Polanyi'? attempted to give some
correlations between the enthalpy change, AH, during a reaction and its activation
energy, E. However, the real physical origin can be found in dealing with the activation
energy which is connected with the diffusion mechanism. The most successful model*?!
identifies E as the sum of the enthalpy to form the defect, AH;, and the enthalpy for
the defect to move, AH,,, or E=AH+AH_. Diffusion mechanisms for solid-state
diffusion may fall into two broad classes: rotation and defect mechanisms. It is
assumed that diffusion occurs by the mechanism that has the lowest activation in the
particuiar structure. It has been calculated in the case of copper (see Table 3.5) that

TABLE 3.5

THEORETICALLY CALCULATED £ FOR THE DIFFUSION MECHANISM IN
COPPER

Dzfect movement AH; AH E
Interstitial 200 (92-115) 3% 203 (97-120)
2-ring rotation - 240 240

4-ring rotation - 90 90

Vacancy 42 (21) 23 (24) 65 (46)
Vacancy pair 373D 9 (9) 40-46

Experimental = 47 kcal/mole

the vacancy mechanism is to be preferred for the lowest value of E (according to
Birchenall'*). Such considerations may be of actual help in the interpretation of
activation energy values, as for example, the theoretical approach made by Pahari
and Basu!?_ It is based on the idea that in the transition state certain existing bonds
are breaking and a: the same time certain new bonds are forming; however,. it is
applied to homogeneous reactions only.

In most cases, however. the investigator is referred to an experimental study of
reaction rates, such as the values of activation energy and the preexponential factor,
determined by means of an empirical Arrhenius-type equation. These quantities have
a particular physical meaning only in the case of a known reaction mechanism, i.e.,
a knowledge of the model relation. In the case of a heterogeneous process, two or
more steps may be involved each of them havirg its own specific activation barrier.
For the consequent processes, where one of them has a reaction rate at least one
order of magnitule lower, then this slower process serves as a rate determining
impedance and becomes the rate-controlling process.
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In the case of comparable rates either for consecutive or parallel processes, the
overall reaction rate is a complex function of individual rate dctermiining steps.
Hence, the observed value of E indicates the mutual balance of individual processes.
At any instant the value of the rate constant is the weighted mean of the individual
constants. If the contribution made by the individual events changes as the trans-
formation proceeds, the value of &k varies with the progress of the transformation or
with an increase in temperature. In the graphical representation of In k vs. (1/T), ic2
most desirable plot is a straight line, as shown in Fig. 3.2. It can be seen from this
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Fig. 3.2. Typical Arrhenius plot.

figure that the transition having a iarge activation energy is very sensitive to tempera-
ture changes and that every reaction is more sensitive to temperature changes at
comparatively iower temperatures. The preexponential factor does not contribuie to
the reaction sensitivity with the temperature; the influence of the term, 77(0<m<1),
hidden in Z, is negligibie.

2 2 Ilorinsaornonize I5
T

The macroscopical approach can be used in the case where the initial system
can be taken as homogeneous-like'®~'%; for example, the thermal degradation of
polymers. The amount of reactants may be described in t2rms of the concentration
(x;) and the equations of homogeneous kinetics may be employed. In many cases,
multiple simultaneous processes are likely to occur, as briefly listed in Table 3.6. The
symbols, x;, signify concentrations and/or mole fractions, the profiles of which are
illustrated in Fig. 3.3. The & symbols denote the overall rate constant and the symbol,
K =k/x’, expresses the equilibrium constant which determines the final state of a
reversible reaction.

In principle, the mathematical model of such a kinetic description may be
assumed to be composed of M independenit equations to fit any physicaily complex
case of j-components and i-kinetic relations, f(x). It can be abbreviated as:

N
=1
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TABLE 3.6
TYPES OF SIMULTANEOUS REACTIONS (see Fig. 3.3)

1. Simple reaction of n-th order

Kk,
nA —> B —dx,/dr = kx3%
2. Parallel reactions
B
k;/‘
A —dx,fdr="r;x, T kaxa
AN
C
3. Consecutive reactions
ks ks
A—> B—> C dxg/dt=k;x,—kxg=k;xa,exp (—k 1) —kzxp
4. Autocatalytic reactions
Ky
A+B —> 2B —dydr=k xaxg = kixa(xa,—xa)
5. Reversible reactions
k,
A __>( B d.tg/dt=kl_tA—k’1."B=kl(on—XB)—kl.\'B
ki

for j=1,2,3 ... M and where S;; is the stoichiometric coefficient for component j.
The main difficulty in the direct use of eqn. (3.12) te find the quantity, k;, is in
determining x and finding the derivatives on the left-hand side of eqn. (3.9) accurately
enough; this is usually carried out by application of a non-linear least-squares
regression analysis. However. eqn. (3.12) may be integrated with respect to time
(assuming §;; = 1)

-

Xt N “r;. N
J dx=x(@)= Y kiJ f(x);;dt =Y kY, (3.13)

0 i=1 fo i=1
forh=1,2..., H (where H is the number of time intervals of x-scanning). If x(¢) is
known and x;; can be estimated, eqn. 3.13 becomes a set of linear equations for the
rate constant, k;. The system can now be solved by some discrete minimization
techniques, for example, an iterative least-squares method!?-2° provided that the
number of independent equations is not less than the number of rate constants. When
a large number of data points are available, the integration can be accomplished by
numerical quadrature?!-*2 using data points. In the case of a small number of data
points, one has to resort to a special curve-fitting method called split function
approximation seeking a function to have continuous derivatives and stepwise
continuous second derivatives?3. Such an integrated solution to rate equations is
generally used in some form to extract information from a series of measurements in
terms of a homogeneous-like kinetic model. Matrix methods have been found useful
for integrating the differential equations using standard computer routines or by
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Fig. 3.3. Typi:al time dependences of concentration for reactants (A) and products (B, C).

means of Laplace transforms within a matrix formalism?*-23. A similar routine has
been applied to a simple composite case of the solid state reaction kinetics>%-27.

Unfortunately, the above kinetics based on reaction stoichiometry?-® would be
a rather simplifying description of a wide variety of heterogeneous processes. The
expression for the amount of reacting material in ordinary terms of concentration or
mole fraction is only formal because such a quantity may vary across the sample
volume. Therefore, an appropriate description should usually be based on the
physico-geometrical nature of heterogeneous processes regardless of the chemical
stoichiometry of reacting species.

3.4. Physico-geometrical description of heterogerneous processes

3.4.1. Choice of an appropriate model
For a description of the kinetics of phase transformation and solid state
reactions numerous phenomenological theories have been proposed based upon a
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Fig. 3.4. Classification of solid-state processes.

certain model simplification’~%-?8=31, The most important models for a single
reacting particle were previously given in Fig. 3.4. The type of process must first be
determined Gy the nature of the products; these may be: a) fluid (gaseous or liquid);
or b) solid. For the first case, the process can be illustrated by model A (see Fig. 3.4),
a simple shrinking particle. This is suitable in the case of sublimation, melting, and/or
dissolution. Such processes proceed without nucleation or else nucleation is extremely
fast and hence, negligible.

In the case of solid products and/or a mixture of solid and gaseous products,
the reaction mechanism becomes more complicated. In the energeticaily favorable
points within the unstable phase A, the stable phase B forms the product domains
capabie of subsequent growth until the reactant A is completely consumed. Such a
transformation consists of two steps: (a) the nuclei formation; and (b) the nuclei
growth. In addition, the nucleation may occur on the particle surface or throughout
the particle volume. If the nucleation is slow, only a single domain on each particle is
formed and the process can be illustrated by model B. If tke surface nucleation is
exiremely fast, the reacting particle is instantaneously covered by a thin layer of the
product and the rate-determining process becomes the propagation of the reacting
interface into the center of the particle (model C), controlled either by diffusion or
phase-boundary reactions. If the rate of surface or bulk nucleation and the rate of
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nuclei growth are comparable, the overlapping of growing nuclei occurs and more
complicated models are required.

For a chosen model the dependence on time of the fraction transformed can be
calculated. In the case of the growth of nuclei being formed in time, ¢ = y, the growth
rate is given by the function x(£)dr. The volume of all nuclei can be expressed by
integration within y and r time-limits. The number of nuclei, , presented in time.
t=y, is determined by the nucleation rate 7= dN/dz. The total amount of grown
nuclei of the volume, V' (), is given by the general relationship

4 ' 4 2
V() = {- {o'l: J x(t)dt] (ﬂ) }dy (3.14)
Jo ¥ dr /=y

where o and 2 are the geometrical factor and the exponent, respectively (for a sphere
¢ =4/3 and 2 =3). The procedure for determining the final model consists of the
appropriate expressions for the functions, x(z) and d ¥/d¢. Combining eqgns. (3.2) and
(3.14), the kinetic equation for ax = V(1)/V . is obtained.

These models are also suitable to describe the processes in which two or
more different starting phases participate: A+ Bigyia) — ABriuig), (model A);
A+ Biruiay = ABy,), (model C); and A+ B, - AB,, (model C). It is valid
under the assumption that one of the reactanis is smaller than the other, acting in
fact as a dispersion of larger particles in a fluid. For the last two cases above, another
model has been recommended??; it suggests a continuous non-stationary diffusion of

!
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Fig. 3.5. Comparison of two different approaches for a diffusion controlled process (see modcl C in
Fig. 3.4).
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one component from the continuous-like phase into the solid particles. This model,
as illustrated in Fig. 3.5, can be compared with the ordinary mode! of the shrinking
unreacted-core particle. The macroscopic observations, however, have shown that
the core-shrinking model, C, is adequate to describe most of the processes of interest.

All of the abr- »-mentioned models assume that the initial particle is a sphere of
isotropic properties with regard to the interface movement. When dealing with a
single crystal this condition is not always fulfilled and for a correct description, 2 more
complex analysis is needed. In addition, some processes in the conudensed state,
{ordering phenomena, martensitic transformations, spinodal de-ompositions)
proceeds without nucleation and special models for their description are required.

The question now arises as to how far the one-particle modei can be applied to
a system composed of many particles. A relatively simple case, such as a monodisperse
system of particles where no interaction takes place, is the decomposition of CaCO;
crystals. In the case of a polydisperse system, the most logical way is to divide the
original system: into a series of hypothetical monodisperse sub-systems for which the
above-described models are valid. The fraction decomposed is then calculated for
each fraction separately and the over-all value is obtained upon their summation. In
the case of two initial reacting species, the relative sizes of both particles are important.
The simplest approach is for two species differing in size by at least two orders of
magnitude. The larger species could then be taken as the homogeneous phase in
which the particles of the second substance are suspended. The other extreme is the
case of two reacting substances both monodisperse with the same particle size; such
a system was treated by Komatsu (see Fig. 3.6), assuming that the reaction proceeds
in contact points only.

= Model F \j"’\

Fig. 3.6. Model for powder reactions (Komatsu model).

Until now, the driving force for a process was given by the difference cf
chemical potentials of the reactants and products arising from their different structure
and/or chemical composition. Moreover, for a system of solid particles, the driving
force may also result out of the difference between the chemical potentials assigned
within the different curvature of phase boundaries. This includes sintering, i.e., the
spontaneous hardening of powder compacts due to the decrease of surface energy.
The sintering process may be understood as occurring in three main stages (Fig. 3.7).
The beginning stage involves the initial joining of particles one to the other; the
resuiting kinetics obey a law derived for the growth of “necks” between the two
spheres. In the intermediate stage, the pores form continuous channels along the
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three grain edges. The final step of sintering involves the disappearance of isolated
spherical pores. Another similar phenomenon is the growth of larger particles from the
smaller ones resulting in spontaneous recrystallization of crystaliine materials. The
particles with negative face curvature disappear contributing to the growth of the
larger particles with positive curvature, as illustrated in Fig. 3.8.
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Fig. 3.7 Model for sintering process.
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Fig. 3.8 Grain growth model.

In conclusion, it should be kept in mind that in searching for an analytical
description of the reaction kinetics in solids, any function obtained is only a mathe-
matical expression of a hypothetical model chosen to represent the process in-
vestigated. If the meoedel actually characterizes the situation, the derived kinetic
parameters will have real meaning. Otherwise, even the most elegant method of
kinetic data calculation is only a mathematical exercise having little physical meaning.

3.4.2. Processes witho:xt nucleation

Transformations of the tvpe, A, — B(14iq,. proceed usually without nucleation.
Such a transformation consists of two basic steps: a) a phase-boundary process: and/
or b) transport processes to or from the reacting interface. The simplest cases are
the evaporation of liquids, the sublim.tion of solids, and the dissolution of solids
in liquids. A very important process is vacuum solid state sublimation. the rate
of which substantially determines the lifetime of high temperature-resistant
refractory materials. Langmuir??-*? assumed that such an evaporation is
accompanied by an independent condensation and at equilibrium, both of these rates
become equal. The evaporating flux of melecules, r, as given per time and surface
units, can be expressed under steady state conditions by

r= P (3.15)

(2rMRT)*?

As derived from kinetic theory by Hertz3%:33, P__is the equilibrium partial pressure
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of the gaseous product of molecular weight M. According to Langmuir32-33, this
pressure, P.,, remains unchanged even in the case of sublimation into vacuum
P., = exp (—AGJ/RT) (3-16)
where AGY is the standard change of the Gibbs free energy of sublimation. Com-~
bination with eqn. (3.15) gives
r = 22zMRT)"? exp (—AGS/RT) ' (3.17)

Knudsen??-33 has shown that the right-hand side of eqn. (3.17) mus

t
by a coefficient, z’, which represents the fraction of gaseous molec
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be multiplied
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equilibrium upon their collisicas with the condensed phasc (x

undergo the condensation upon their contact against the su.ace). This means that the
sublimation kinetics is described by a two step mechanism consisting of the surface
reaction and the desorﬁr-nn3‘-33. For the evaporation of pure liquids under

rate-controlling process becomes f.hc diffusion through the surface gas layer. The
solution for the diffcrent cases can be found in the work of Crank>* or in the mono-
graph on transport phenomena?>.

Similarly, one can proceed to binary liquid solutions where the rate controlli

e~ 3

3

ocess 1s also diffusion, but in the liquid phase aiong the di

the phase-boundary. Hence, the dxssoxutxon of a =olid In a Hqui

\

either a simple dissolution or a chemical reaction ( ttion O, n. HChH. It
consists of a two-step mechanism: a) the process on the phase-boundary, and b) mass
transport. In the simple case of a dissolving solid, the rate is described by the rate of
surface reaction expressed by the consumption of solid, m, per unit time:
—dmjdi=kA(C°—C) (3.18)

I o~

where A is the surface of the phase boundary, and C and C° are the buik and saturated
concentrations of the solute.

Equation (3.18) is first order with regard to the solute. If the surface reaction is
faster than the mass transport, the diffusion becomes the rate determining process.
Under steady-state conditions the diffusion takes place through a liquid layer
adhering on the solid surface and having the effective thickness, d.4. The rate of
dissoiution i1s then

—dmjét = (D6 g)A(C°—C) (3.19)

where D is the diffusion coefficient and 6.5 can be theoreticeliy calculated for the
particular hydrodynamic conditions. In general, the following equation is valid
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where k< D/6.¢ in eqn. (3.18), and A>(D/d.g) in eqn. (3.19); the concentration
profiles for both of these cases are shown in Fig. 3.9.

Ct Dpitsusion as Phase - boundary process

(i) rcte -controlling (j) as rate-controlling
Concentraticn

} x

x - coordinate

Fig. 3.9. Concentration profiles at solid-liquid interfacc.

In considering a dissolving solid particle, its surface becomes a function of time,
A =A(r). Assuming that the particle shape remains constant during its dissolution.
then A = km?*/3, where m is the particle mass. If the particle of initial mass, m*, is
being dissolved in a liquid of volume V/, then the ainount dissolved ir time ¢ is given
by m*—m, and the rate of dissolution by an equation described by Hixson and
Crowel3%-37;

dm = %(mo—m*—;—m\ m*/3 (3.21)

4t
where m is the amount of solid material to form the saturated solution (C, = i1,/ ¥).
Assuming that for r=0, the concentration, C=(m*—m)/V =0, integration of
eqgn. (3.21) yields

J3aib—x; +115In (a+b) (a“—ax+x’)> = kt

V( - 2
—{ 3 arct — - .
A\ 3 Gb—a) 2x—a) (@t (@’ —abt b))

(3-22)
where a=nr —m*, b=m*"? and x=m'?=(CV)">. In the case of unsteady
diffusion {dissolution in viscous fluids), the rate of particle dissolution was derived by
Readey and Cooper??

9c* d*c¢c* 2 8c* a* da* oc* o
A* a2 x2 = @D (3-23)
ox or r - or r- dr® cr
* ¥
s 0()
4 r
where
a*=£ r*___L ctzc_cx *_2‘



420

are dimensionless parameters and

_(C‘_:_':.g’f)_ and A= W‘s

B = =

(G~ GG Y)
The symbols are C . = nitial concentration of the solute, C, = saturation concentra-
ticn at the phase boundary. « = sphere radius. r = time. r = radial distance,
C. = density of the solid (sphere), D = diffusivity and ¥V = partial specific volume of the
sclute. In the case of a surface process of n#-th order being the rate-determining step,
the rate of dissolution related to the concentration of the solute is given by the
equation of Stavrinou and Biumberg3?.

3.4.3. Nucleation-depeinident pro-.sses
This ivpe of transfoimation includes all pclymorphic transitions and dissocia-
tion reactions of sclids, as illustrated by models B. C, D, E in Fig. 3.4.

3.4.3.1. Nucleation. The rate of nucleation, 7. is defined as the number of stable
product domains formed within a unit time inierval in a unit volume of the matrix.
As long as the nuclei are created purely randomly throughout the whole reactant
volume, the process is called homogeneous nucieation. If the nucleation proceeds on
toreign. energetically preferred areas (walls of a reacting chamber, particles of im-
purities or even dislocations) then it is called heterogeneous nucleation.

The classical theory of nucleation in a one component, single-phase syvstem
indicates that the temperature activaied fluctuations of atoms (or molecules). which
gather into a certain critical size capable of a spontaneous growth. is accompanied
by a decrease of the Gibbs free energy of the system. Such product clusters are
designated as nuclei and their size is given by the thermodynamic criterion of stability.
The change of iree energy coupled with the creation of an embryo of phase B within
the surrounding medium of the phase A 15 given by

AG = (G, +6) .+ Bi*3y (3.25)

where 7 is the number of atoms in the embryo, 4 is the atomic volume. f§ is the embryo
shape factor, ¢ is the energy Increment resulting from the elastic strain which is
asscciated with volume changes during the transformation, 7 is the inte-face
energy. and AG, is the difference in the Gibbs free energy of the bulk phases A and B
per unit volume. In the case that one of the phases is a liquid. the quantitv ¢ can be
neglected. Assuming a spherical shape of the embryo. the function. AG, reaches a
maximum for nuclei of the radius. r_;,

r —24/AG, . (3.26)

The energy height, ¥ ‘maximum value of AG) is
W = {16;/3) =y ]AG2. (3.27)
The quantity, AG,, may be approached by the relationship, AG, = RT In (P/P.)/ V3.
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for the condensation from a vapor or by AG, = H (T—-T,)/T,. for the crystallization
or melting at small departures from equilibrium (where P and P_ are the actual and
equilibrium vapor pressure, V,, is the molar volume. AH, is the heat of fusion per unit
volume and 7 and 7, are the actual and equilibriuim temperatures respectively).

Volmer and Weber*° assumed that for the rate of nucleation the concentration
of critical nuclei is a characteristic of equilibrium. Hence. the rate of nucleation per
unit volunie is a product of the equilibrium number of embryos of critical size per
unit volume and the rate of interface movement. Combining the absolute reaction
rate theory with the Volmer and Weber approach, Becker and Doring™! have derived
the relationship,

I=Zexp(—EptkT)exp (— W/kT) {3.28)

where Ep is the activation energy for motion across the embryo-matrix interface and
Z is the frequency factor which may be taken to an order-of-magnitude accuracy as
Z = N%x v,. The quantity, N2 is the number of unassociated molecules per unit
volume and vy is the molecular jump frequency. From egn. (3.28) it follows that at the
equilibrium temperature, 7., /= 0. because of exp (— BAT) =0 (see eqn. (3.27)).
The function / has a maximum on account of the competitively opposite influence of
the terms, exp (— H7kT). which increases its value with decreasing temperature, and
exp (— Ep/kT), which decreases its value to zero (Ep = constant).

In the case that both phases A and B are solids, the quantity. ¢, in egn. (3.25)
influences th= shape and the size of the nuclei. Two tvpes of such nucleation processes
are usually assumed:

(1) [lucoherent nuclearion, where the nucleus and the host matrix do not have a
crystallographic continuity (where y 2 200-1000 erg/cm? has the essential weight in
Py S | £ 7 A, £ DT\ PR, |
LIIC vAl Fr, 5CC C{It. (J-<1)), alld

uc

(2) Coherent nucleation. where both of the phases remain in surface contact
with the crystallographic structure which is very similar, e.g.. the atomic distances in
the surface are almost identical. The term, y, is small and the nuclei shape is deter-
mined by the elastic constants of both phases. Such nuclei are oriented in a certain
crystallographic direction with regard to the original phase A.

In a multicomponent homogeneous system, the variable quantities are both the
nuclei size and the nuclei composition. The classical theory of homegenecus
nucleation was exter.ded for binary systems by Becker®Z. In this approach, the first
step is to calculate the embryvo composition in connection with the required decrease
of the system free energv (AG,<0). For the sake of simplicity, the immiscibility tvpe
of a binary phase diagram is shown in Fig. 3.10. The homogencous materiai of a
chosen composition, Xg. is cooled down to a region of temperaiure where the
equilibrium configuration consists of the phase A (composition. X)) and the phase B
(composition, X?). The equiiibrium composition is given by the contact points of the

Tee energy curve with the commous tangent. The change in the free energy on forming
clusters of composition X? is given by the difference AG,, see Fig. 3.10 (refs. 45-47).



Fig. 3.10. Binary system with limited miscibility (see text). a) miscibility gap (phase diagram);
b) graphical determination of free energy change asscciated with nucleus formation; c) free energy
change connected with new phase formation as a function of its composition.

For the system depicted in Fig. 3.10, the initial homogeneous system, Xp, is stable
with respect to the formation of clusters with a composition between Xy and Xj
(increase ia the volume free energy). The clusters of the composition on the right-hand
side of X are unstable with respect to the formation of X?, and the previous
formalism of eqns. 3.26 and 3.27 may be used. The created cluster must fulfil the
condition for minimum H (eqn. 3.27). which is determined by the balance between
AG, and y. For simpler cases, Becker assumed that the nucleus holds the com-
position of the stable phase B and its size is given by the surface erergy y. On the
other hand, Borelius*? neglected the influence of 7 (= constant) using the decisive
influence of fluctuation in the composition. In practice, the critical nucleus charac-
terized by the least work of formation for the given conditions reflects the balance of
these two influences. The nature of such a critical nucleus was introduced by
Hobstetter** and more precisely by Cahn and Hilliard**. The latter found that at low
supersaturations, the nucleus has the composition of the stable phase forming a sharp
interface. With increasing supersaturation, the interface between the nucleus and the
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host matrix becomes progressivelv more diffuse and the embrvo composition is 2
€inction of the distance from its center. When the inflection point on the free energy
curve is approached, the work of critical nucleus formation decreases to zero. thus,
in the vicinity of the so-called spinodal, the critical nucleus no longer resembles a
cluster of the new phase, but rather represents a fluctuation small in degree but large
in its extent in space. It can best be illustrated on Fig. 3.11 where the initial com-

spinodatl

. i
—_— i e
'
.

Q

Fig. 3.11. Condition for spinodal decomposition (sce text).

position X falls within the region limited by the inflection points. X,; and X,;. The
free energy decreases along with the continuous change in the composition of both
precipitated phases. Such a process is called spinodal decomposition®®.

The theory of heterogencous nucleation is based on the determination of the
quantity, W (eqn. 3.27). In order to initiate the nucleation the impurity interfaces may
decrease the nucleation barrier B according to:

-3 _ 2
w_16__ 7 [(2+cos 8) (1 —cos 0) 'l (3.29)
3 (AGY L 4

where 0 is the contact angle of the three-phase boundary (domain of phase B,
mairix A and impurity surface). For nucleation in solids, the quantity 1 is decreased
by either the decrease in the quantity y (or ¢) or by an increase in the negative value of
AG,. It is assumed that most of the potential embryos are aiready present in solids
and the entire nucleation process demands only that their development become
stable. Thus, if N, is the number of such potentiali embryos in a volume element of a
solid, the nucleation rate can generally be expressed by the relationship,

I =dN/dt = k,(No—NY (3.30)
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which is calied the power lav.. The exponent, fi. expresses the number of activated
steps and is usually equal to one. The nucleation rate can also be described by the
exponential law,

I=k{Noexp(—£k;I) (3.31)

If the rate constant, A, is small the numbcr of nuclei is given by
N=k Nyt (3.32)

but if A, is large, the nucleation is extremely fast so that the nuclet are formed
instantaneously on all of the available nucleation spots, vielding ¥ = N,.

2.4.3.2. Growth of the precipitated phase. The growth of a nuclei is signified by the
motion of a phase boundary in the direction of the unstable phase. A. In solids this
process can be controlled by either the mass transport (diffusion controlled trans-
formation) or by the shear of large arcas in the initial phase lattice vielding new
crystallographic arrangements (phase-boundary reaction). In a single component
svstem™ " the linear rate of the propagation of phase-boundary can be expressad as the
velocity difference with which the atoms (or molecules) overcome the energy barrier
on the interface matrix-embryo

r=_AipN_y [A exp( EA*B) A e\p( EB_.A\] (3.33j
= ApN,V 3 — — pl — 3.33
. RT A RT}

where 2 is the atomic volume of the phase B, p is the probability of jumping of an
atom along the posttive transport direction. and v is the vibration frequency in
phase A. The terms. A, and Ag, are the accommodation coefficients in phase A and
B, respectively: A 1s the number of atoms per unit area of the phases interface, and
E 1s the activation energy foi- the given barrier crossing (A — B and B— A, resp.).
Assuming that for polymorphic transformations, 4, = Ag== A, eqn. (3.33) can be
rearranged to*”

' ) (- ()]
r=/pNvA)] exp{ — -{ 1—exp{ — . (3.34)
P [ P ( RT P RT 7

For a small degree of supersaturation, T = 7— T, eqn. (3.34) may be rewritten as

r=/iN,AD* (—Aﬁ\ AT (3.35)
RT/

where D* is the diffusion coefficient for the diffusion along the grain interfaces.

For a multicomponent system, the rate of growth at which the product-parent
interface moves normal to itself may be controlled either by an interface (topo-
chemical) process or a diffusional transport or their combination. In principle, the
analogous relations are valid as derived for model A.

3.4.3.3. Nuclei growth as the rate determining step
(@) Phase-boundary controlled growih. Using eqn. (3.13), it is possible to calculate the
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volume of the product. }(r). and the dependence of the function f(x) on time 7. for
the given model of the process.

Models B, D and E. For the normal type of random nucleation (exponential
law, rate constant A () and the isotropic linear growth rate in three dimcnsions (rate
constant k), the classical solution of eqn. (3.13) gives™®

SaNokI[ k.1
SE0R2 ! exp (—k ) — 14kt — 4+ 1 J (3.36)
Vok';' L 11) 1 3

Az =

If N, is large and &, is small, indicating a consiant rate of nucleation (linear law
egn. (3.32)). the exponent term can be extended in a series. Neglecting greater terms
than (k,1%), eqn. (3.36) gives

(3.37)

1

A similar relation, x vs. r*, was also derived by Mampel*® for the inital stages of a

decomnao r oxtreme if I- ic -
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However, certain nucleus forming sites will never allow nuclei to grow because these
sites become incorporated in other growing nuclei before their activation. The
effective interfacial area is then introduced as (I —zx) in the right-hand side of
eqn. (3.39) (Yerofevev>?); after integration,

—4aN 3
2= 1—exp (——4—1—0—1‘2 l;l. (3.40)
| 58

R %
379

The problem of accounting for the fact that the fraction transformed when nuclei
overlap one another is less than the value of x calculated on basis of egns. (3.36)—
(3.38) may be solved in a quite general way by introduc®::2 the cun~<pt of extended
fractional transformation, «_,. using the equation

dx = (1 —2«)dx., and/or «., = | d2j(1—2) = —In(1--2) (3.41)
The term, =z, is the fraction transformed if all of the domains had grown without
interpenetration and nuclei had continued to form everywhere in the sample including
the already transformed volume. The resulting eqn. (3.4]1) may then be introduced
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back into eqn. (3.36)*S.

A more instructive method of Kinetic analyses®2~>* is based on the following
assumptions (see eqn. 3.13): the volume of domains ready to grow is k3(1—y)> at
time y and for the specific rate constant of omnidirectional grov~h £, ; the rate of
nucleation per unit volume is 7 and the total number of nuclei formed is /dy. For
three-dimensional symmetry

i"r
2o = k3 | (—yPldy. (G.42)
3 Jo

Using ., from eqn. (3.41) and making an assumption about the variation of I with
time in accordance with section 3.4.2, eqn. (3.42) can be integrated. For a constant
nucleation rate, k,,

~In(1—a) =(@f3) K3k, 1*. (3.43)
If all nuclei are already present at time 3 = 0 (initial number ¥y) eqn. (3.43) changes to

—In(1—2) = $=N k31’ (349
In the case of only two-dimensional growth, eqn. (3.44) changes to

—In(1—2) = Nomhk3t? (3.45)

where 4 is the disk-like nuclei thickness.

In highly dispersed systems where random nucleation forms only a single
nucleus in an individual particle (see model B—Fig. 3.4), the kinetics is then described
by a unimolecular decay law

—~In(l—x)=k"t (3.46)

derived by Mampel*® for final stages of decompositions. In most of these cases, the
resuiting equation <zn be abbreviated in the formal form of the Johanson-Mehl-
Avrami-Yerofeyev—Koglomorov relation*9-33-198

—In(l—-x)=ki"=Zexp (—E/RT)1". 3.47)

The value of the exponent, r, depends on the shape of product domains, on the rate
of nucleation, and the type of subsequent growth-controlling process, as listed3+-10%
in Table 3.7. The complex activaticn energy, £, is composed of the activation energies
of the individual process’®?, i.e., of nucleation, E,, growth, E, and diffusion, Ep.
The quantites, E; and E,, are further composed of two terms: the first arising from
the kinetic barrier to transport and the second from the thermodynamic work barrier
dependent on the extent of supercooling, as discussed in section 3.3.1 (eqgn. 3.27).
The preexponential factor, Z, depends predominantly on the geometry and number
of nuclei to be formed.

In some cases the formation of additional nuclei, as considered for example in
linear nuclei growth, is a more important process than the formation of fresh nuclei
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TABLE 3.7

NUMERICAL VALUES FOR THE KINETIC EQUATIONS OF XNUCLEATION AND
CRYSTAL GROWTH: —In(I-z2)=Zcxp(—E!RT)r"

For the increasing rate of nucleation the exponent r is larger than that for tn< constant nucleation
rate. For the decrcasing rate of nucleation the cxponent r falls between that of the constant and that
of the zero nucleation rates.

Prase-boundars controlled: Diffusion conrrolled:
x(ry=kzz x(r)y = (D112
r E r E
spheres 4 SE;+E, 2.5 IELTE,;
Constant rate plates 3 2E.+E, 2 Ep+E;
of nucleation: necdies 2 E,+E, 1.5 1E,+E,
I= k; f
spheres 3 3E, 1.5 3Ep
Zero rate plates 2 2E, 1 Ep
of nucleation: needles 1 E, 0.5 $+Ep
I= i\'o

and the initial nucleation law is relatively less important. Assuming the branching
coefficient k5, the net rate of nuclei production is given by

dN/dt =k, No+ksN andfor N=£k,Nolks[exp (kst)—1] (3.48)

which is suitable to describe some explosive reactions. Using a similar procedure to
eqns. (3.12) and (3.36), the fraction decomposed, z, is

x = FkykyNo/Vo k2 exp (—kst) (3.49)

where F is the cross-section of the nucleus.

Prout and Tompkins®® solved the case of interfering branching nuclei growth
by introducing the probability of termination, k; = k3x/%;; where z; is the fraction
decomposed at the inflection point. The final equation is then

dx/dt =k;x(1—2) andfor In{z/(1—2)]=k;t+constant (3.50)

which is the simplest case of the description of an autocatalytic reaction where the
reaction velocity is a function of both the amount of the reactant and the product32-83,

(b) Diffusion-controlled growih. The transition of melts to the solid state upon their
cooling may proceed either by crystallization or by the formation of a glass*?. Which
of these two processes actually takes place is determined by the rate of cooling
and by the differences in temperature profiles of the rate of nucleation and the rate of
crystal grovth. In Fig. 3.12, two characteristic cases are shown.

System A will solidify by crystallization regardless of the rate of cooling
because there is always enough nuclei formed * ., grow at a lower temperature®2; on
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case A case B

— T freq - - > T th

Fig. 3.12. Temperature dependence of nucleation (I} and crystal growth (k.) rates for two typical
cases.

the other hand. system B will easily form a glass. particularly at high rates of cooling
because in the region where the rate of nucleation is large, the rate of growth is
already negligible. Actual svstems exist somewhere in between these two extreme
Casces.

For case A, there are numerous models suggested for the crystallization from
both pure melts and solid state solutions. To describe reaction Kkinetics of the
exponential tvpe, the Johanson-Mehl-Avrami-Yerofeyev—Koglomorov equation is
derived usually on behalf of diffusion controlled growth (latter stages of crystalliza-
tions). For example, the kinetics of a single phase crystallization in a two component
system can be assumed. The rate of growth depends upon the rate at which atoms arz
brought to the interface through the melt. The concentration in the solution at the
interface is maintained at the equilibrium value Cg, which is independent of pre-
cipitate size and Cj is the actual solute concentration. The concentration of the
solution decreases as precipitation progresses and can be expressed in terms of «, the
fraction of the available solute actually precipitated at time ¢, or

l—2=(C)—Cp(Ci—Cp) (3.51)
where C; and C,, are initial and instantaneous concentrations in the solution.

The diffusicnal rate of growth is given*7-3%-60 by

(Cs—Cg) dR/dt = D(Oc/Cr),_r (3.52)
where R is the radius of the particle. Using the steady state solution of Fick’s equation

for diffusion through a spherical shell, with diffusion coefficient D independent of C
and repiacing C, by x through eqn. (3.51), the expression is obtained:

RR_pGi=Cey_, (3.53)

Assuming growth without nucleation, ie., diffusion-controlled growth of a fixed
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number of particles N, the following equation is derived®!-°?

-

12
*=1—exp [— 8 \2aNyD3? (E—'—CE) 15"1] ] (3.59)
{73 C,—C:

Or using the assumption that the constant rate of nucleation 7 changes by the
exponent of time to 5/2,

_ N _ 172 s
z=l—exp[- 1—6\2:03'-(C'—CE k,r‘-]. (3.55)
15 Cz—C

The exponent o'f-t;me, r, changes according to the mathematical solution of the
equation; for instance, in diffusion-controlled growth of cylindrical particles, r=1;
for disklike particies, r = 2;3; and or eutectoidal crystzliizations. r = 3 and 4; these are
summarized in Table 3.7. Similar relations can be employed to describe precipitation

from aqueous solutions®?-¢3.

Model C. This type of process includes reactions between solids and gases,
solids and liquids and ia some special cases, solid-solid reactions (if one reactant is
assumced as a continuous mediuni). Such reactions can be described by model C,
Fig. 3.4, when the rate determining process may become either diffusion through
the product layer or phase-boundary reaction.

s N P RS

A B-. >t A laBl B -—>} -AB :

e
X x final
Fig. 3.13. Modecl of a reaction between two solids.

3.4.3.4. Processes proceeding by instantancous surface niccleation

(a) Diffusion-controlled reactions. If one cf the components participating in the
reacticn must penetrate through the layer dividing two reacting ph=ses A and B
(see Fig. 3.13). the time dependence of gradual build up of this plzaar product layer
can be described by the parabolic law

x?=2DV, Cot+a'’? (3.26)

where x is the thickness of the product layer, D is the diffusion coefficient for the
slowest transport (vacancies, intcrstices, etc.), V_, is the volume of product AB
formed from I mole of the lowest penetrating componcnt. Cg is the concentration oi
the penetrcting component on the interfa.e and a is the laver thickness at time 7 =0.
Jander''© applied the parabolic rate la*v to pc ..dered compacts (see Fig. 3.14) which,
expressed as a funcuoii cf fractional transfo. .:ation, %, can be written =<

[1—-(1—2"?]* =2kDjrgxt. ; (3.57)



Fig. 3.14. Model for a powder reaction (Jander).

This equation is valid under certain simplifying assumptions® '?, namely, that of the
instantaneous surface nucleation (coherent preduct layer is already present when
bulk diffusion does occur}, an omni-directional bulk diffusion. and the immiscibility
of the product phase with any of the reactant phases. It is further assumed that the
reacting particles are spheres of uniform radit and that the diffusion coefficient and
reactant activity as well as the particle volume are constant during the process.

Kroger and Ziegler®® assumed that the diffusion coefficient of the transported
species was inversely proportional to time,

[1—(—-a)'?]* =2kir xInt. (3.58)
Zhuravlev, Lesokhin and Tempelman''? modified the Jander relation by assuming
that the activity of the reacting svbstance was proportional to the fraction of un-
reacted material, (I —x), and arrived at the expression

o1 1]- 2kD |

[a—x3 |

(3.59)

rs
Gins.ling and Brounshtein!!? discarded the parabolic law in favor of an equation
relating the growth of the product layer to the decrease in interface area using
Barrer’s equation'’? for steady-state heat transfer across a spherical shell, and
obtained the equation

2 > Y
1-2a(—apr =222, (3.60)

3 ro
ZCarter®* and Valensi®> improved eqn. (3.58) by accounting for differences in the

volume of the product layer with respect to the volume of the reactant consumed,

ZkD(Z—l)t

2
To

Z-Z-DU-2*P-[1+Z-DaJ? = (3.61)
where Z is the ratio of the actual volume of the product layer to the ideal volume if no
change occurs. Huibert®“ used the assumptions of eqn. (3.56) and replaced 7 by In ¢
in eqn. (3.61). Such an equation adequately describes the probability of removal of the
non-equilibrium defect state and has an exponential dependence on temperature.
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Komatsu and Uemura®® introduced counter-diffusion arriving at an “anti-Jander™
equztion

[(1+2)2—1F = 2"'20 ¢ (3.62)

To

All of the above equations express the unreacted-core-shrinking model which,
in most cases, adequatelv describes the real situation. For some reactions it is more
convenient to introduce an idea of a continuous reaction (as already illustrated in
Fig. 3.5) where reactant B is bulk adsorbed by the reactant-particle A, the whole
volume of which is continuously changed to product AB. Diinnwald and Wagner®?
and Serrin and Erlickson®® used this model to describe the kinetics in powder systems.
The fractional conversion, x, given by the ratio of the mole number of component B
adsorbed into particles A in time 7 per mole of B finally adsorbed when the reaction
is completed, is equal to

n—x

:1=l——62- >

iw n=1

i, exp (—n?kt) (3.63)
n-

The term, k (= z? Djr2), is the rate constant, 1 is the summation integer, D is the
diffusion coefficient B in A and rg is the radius of particles A. The correlation of this
model for polydisperse systems was given by Miyogi®® (for Jander’s model), Sasaki’®
(for Carter and Valensi’s model) and Gallagher” ! (for Diinnwald and Wagner’s model).
The homogencous model is suitable for porous spheres (pelletized catalysts). The
relationships between the continuous and the unreacted-core-shrinking models can be
given by the effectiveness factor (see section 3.6.1).

(b) Phase-boundary controlled ieactions. When diffusion through the product layer is
so rapid that the reactants cannot combine fast enough at the reaction interface to
establish equilibrium, the process becomes phase-boundary controlled. Assuming
that the nucleation step occurs virtually instantaneously and that the reaction rate
is proportional to the surface area cf the fraction of unrecacted material

dx kS
= = I (3.64)
dt Vo
where S, is the instantaneous surface area of vet unreacted co1= of particle and ¥V, is
the original volume of the particle. After various mathematical operations, the

equation, analogous to the classical rate equation for gases. is obtained in the form of

{—(1—a)" =r£, (3.65)
3]

where 77 is equal to 1/3, 1/2 and 1 ior three-, two- and one-dimensional symmetries,
respectively 4%,

*Note that overall rate constants for topochemical kinctics are inversely proportional to the radius
ro whercas diffusion kinetics are inversely proportional to the square of the radius.



432

3.4.4. Sintering and related phencmnena

A sysiem of solid particles ireated under a suitable high temperature undergoes
a spontaneous process of hardening where both the surface area and the free energy
decreases. The kinetic description of this sintering process is based on the idea that
the rate-determining step is the mass flux from the places of the positive to the
places of the negaiive surface curvatures. Frenkel”” gave the explanation for the
sintering of viscous material with Newton’s characteristics and later Mackenzie and
Shuttdeworth ™2 for inaterials with Binghain’s body characteristics. Some discrepancies
between the theory and the experiment led to the establishment of models where the
raie-controlling process is the diffusion of vacancies from the places of negative
surface curvatures into the centers of particles (Kingery and Berz’*. etc.).

In general, the sintering process plays a most important part in the formation of
ceramic bodies and in powder metallurgy. Hence, it is desirable to list the individual
rate-liniting processes to aid in understanding of the overall sintering kinetics. The
rate at which the neck voiume changes seems to be the best indication for the rate of
sintering and 1s determined by the rate at which atoms move into the neck region.
Equating this mass transport flux to the geometric requirement governing the sphere
denstfication gives a series of relationships between neck radius, r. and time ¢,
r =constant :™; where the time exponent m, is characteristic for the particular type
of mass transport (see Table 3.8). Because the observation of neck growth is experi-
memally difficult, it is convenient to determine the linear shrinkage, AL/L,, which is
equal to the fractional change in center-to-center particle distance and which exhibits
the characteristic time exponent®!* (Table 3.8).

TABLE 3.8
CHARACTERISTIC EXPONENT m IN SINTERING RELATIONS (INITIAL STAGES)

Sintering mechanism Neck radius Linear shrinkage Differenrial
grouwth expression
K AL AL ke= 92 ke
=k"= _— =g =K1 —_—_ =k
7 Lo x dr

Evaporation from a convex pore
surface and condensation on the no contraction
concavs neck surface. 1’3

no contraction

Surface diffusion between the same
regions on the solid—-vapour

surface. 17
Viscous or plastic flow of a solid. 12 1 0
Grair: boundary diffusion controiled

by vacancy formation. 1/3 | J -1

Grzin boundary diffusion controlled
by vacancy movement (both
between the same regions along
the interparticle boundary). i/6 1/3 -2

Volume diffusion from the region of
mterparticle contact into the neck. /5 252 —2/3




433

The rate of contraction for a specimen of length L,, which is composed of
monodisperse crystalline spheres of radius a, is given, according to Johnson and
Berrin’?, as

d (&)
AL\'?? .634D,
(——) Lo/ _ 20 - (3.66)
I, dt kTa
for the volume diffusion. If the diffusion takes place along the particle faces, then
(AL)’ 06 d (Lﬂ ) 0.772bDy (3.67)
Ly dt kTa* )

where AL (= Ly — L) is the linear contraction, 7 is the surface energy, €2 is the volume
of vacancy, b is the effective gap between two particle faces, D, and Dy are the bulk
and surface diffusion coefficients, respectively, and k is Boltzmann's constant. These
equations hold for the initial stages of sintering which involves a significant change in
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Fig. 3.15. The course of shrinking of powder compact during sintering process.

shape as the necks grow between particles but yvield a modest total shrinkage of about
ten per cent. The process of sintering involves, however, progressive steps, as shown in
Fig. 3.15. The initial stage terminates when grain growth can occur. During the
intermediate stage of sintering, where the solid structure formed kas a complete'y
continuous pore phase (model 2), grain growth advances and the cross-sectional area
of the pore channel decreases. A diffusiona! equation was selected to calculate the flux
of vacancies from the pore channel situated on the edges to the center of the faces of
the polyhedron, or

dP _ —B,D,y0

3.68
de kT ( )
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where P is the volume fraction porosity and B, is a constant related to edge length and
possibly to the time dependence of grain size, which may serve to correiate the
experimentally obtained curvature in the plots of density vs. time. At about 65 percent
of the theoreti~al 2ensity the pores become discontinuous (model 4), thus terminating
the intermediate stagc. In the final stage where the pores are nearly spherical in shape,
they can shrink witheut changing shape (model 5). The systems, including melts, in
the advanced stages of sintering, which sinter by a different mechanism are described
by BereZnoj’® and Kingerv’”.

After sintering, the resulting nonporous material is composed of close-packed
grains. If the initial particle system is polvdisperse. the final grains have a polv-
disperse character. The larger particles have the center of face curvature inside the
grain and they tend to grow at the expense of the smaller grains which have the
curvature center outside the particle (model H, Fig. 3.8). The rate of growth is
usually diffusion-controlled, as given by the differential equation’®

— =k—- (3.69)

where R is the radius (size) of the particle.

A similar phenomenon is the spontaneous coarscning of precipitants. In a
polydisperse system the number of mean-sized particles grows because certain
particles disappear, feeding, in fact, on the growth of larger particles. This process is
associated with the decrease of interfacial free energy. After some simplifications.
Greenwood’? deduced the following equation

R (51—5)= 2D Voy € (i - i) (3.70)
dt RT C*\R, R
where C and C* are the concentrations in a saturated solution in equilibrium with the
planar intcrface and with the precipitant particles of radius R. respectively: V,, is the
molar volume of the precipitant, R_, is the average particle size and 7 is the interfacial
energy.

The theoretical modeis for sintering are difficult to reformulate in terms of
surface area. Although the ratio of surface to volume of a particle depends to a
certain extent on its shape, it varies inversely with the diameter of particle. The total
free energy of a large number of fine particles is therefore greater than that of a
smaller number of large particles or even a solid block of equal volume. It is thus
reasonable to assume that the driving force for fine-powder sintering is the reductiop
of total surface area and total free energy. As the surface energy is proportional to the
surface area, A, it can be written®°-8! similarly to the above-introduced time exponent

dA/df = —k,At™" andjor dA/dt = —k[(A—A)™™ (3.71)

where &, is the temperature dependent constant and A, is the surface area after the
sintering is completed.
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3.5. Molecular descrintion of heterogeaeous processes

3.5.1. Role of zefects in solid-state processes

The explanation of reactions in liquids and gases is not difficult because the
reactant mixtures occur on the molecular level. The existence of uniform concentration
at the reaction zone is thus acceptable. In solid-state reactions the concepts based on
concentration are of little significance and the kinetics should be expressed in terms
of both spatial and time coordinates, as shown in section 3.4. But such kinetic
equations derived from the overall reaction velocities are insufficient to characterize
in detail the intrinsic mechanism because many plausible kinetic paths, although
differing in details, lead often to the same kinetic law. Thus for a better understanding
of sclid-state reactions it is desirable to establish still another model on the atomic
level of elementary processes in the solid network®”~%?. This model is based on the
knowledge of the nature and properties of lattice imperfections. Such defects must
either be created or destroyed, move, interact, aggregate and/or become ordered to
make possible a solid-state reaction. From this point of view the surface represents,
in fact, one of the most important imperfections of the solid-state lattice. At a temper-
ature above absolute zero a finite crystal may present some of the following defects:

1) Point defects: a) Atomic (vacancies, interstitial atoms or ions, foreign atoms
or ions in the proper lattice sites and/or in interstitial spots); &) Electricai (free
electrons or ho!=s); ¢) Thermal (phonons).

2) Line defects dislocations.
3) Plane defects stacking fault, steps, discontinuity at atomically fiat surface.
4) Volume defects inhomogeneities, Iattice distortions.

All solid-state reactions undergo one of the following steps durinz their
transition states:

1) The creation of a defect.

2) The association of defects into small clusters (prenucleus formation) which,
although distorted, is still part of the host lattice.

3) The transformation of a prenucleus into a definite product domain (nuclcus
formation).

4) The transport of matter through the solid by some type of a defect diffusion
process.

5) Growth of nuclei by accretion of defects.

6) In some cases also the formation of a gas molecule and its desorptior

The existence of defects gives the atoms an opportunity to move across the
solid lattice as a necessary condition for any solid-state process. It is plausible to
presume that in an ideal Iattice (perfect solid) no reaction could occur.



3.5.2. Creation of defects

The sources of point defzcts are often processes taking place at the phase
boundary. For example. in a perfect crystal of NiO in contact with an atmosphere of
a given partial pressure of oxvgen, the equilibrium conceniration of defects is
established spontaneousiy. This process starts on the crystal surface where electro-
negative gaseous oxygen is absorbed as the O>~ ion, thus drawing away two clectrons
from two neighboring NiZ* ions. The two holes created (Ni®7) are likely to move
into the crystal bulk while Ni?” underneath climb up to the surface to lengthen the
boundary lattice along wiik new O?~ ions. The difference in the concentration of
holes and vacancies is balanced by the diffusion flux if the crystal is put in good
contact with metallic nickel. This in fact simulates the actual conditions during the
surface oxidation of nickel, which is the simplest case of a diffusion-controlled process
leading to the parabolic kinetic law, as discussed in section 3.3.4 (the defect concen-
tration con the NiO/NiI interface would be different than that on the NiO/O, surface
creating a permanent concentraiion gradient across the NiO layer which serves as a
driving force for the diffusion process resulting in the gradual build-up of the NiO
layer®®).

A number of studies of sintering in oxides were concerned with the effect of
impurities on sintering rate. Since this rate depends upon the diffusion coefficient. all
factors which change the vacancy concentration will also change the sintering rate.
Thus, the addition of Li1,0 to ZnO was found to increase the sintering rate, cvidently
pecause it adds oxygen vacancies and the slow step is expected to be the diffusion of
anions.

Another source of defects may be the curvature of the phase-boundary. as
discussed in section 3.4.4. A surface with a negative curvature contains an excess of
vacancies in comparison to the crystal bulk®°. The highest concentration of vacancies
is therefore in the regions where the surfaces are most sharply curved and the free
energy change is most favorable for vacancy generation on the points of two particle
contacts. This accounts for the preferential growth of the joining necks®*?-*? by
vacancy movement at grain boundaries. It gives a net flow of atoms in the reverse
direction and leads to consequent shiinkage and final densification. The function of
the grain boundary as a sink for vacancies is a key concept. It was proven experi-
mentally in the case of pores isolated from grain boundaries which do not shrink, i.e.,
no concentration gradient appears to permit diffusion. The second most important phe-
nomenon in solid-state reactions is diffusion. In addition, it should be mentioned that the
generiation and diffusion of defects can be facilitated by stress, magnetic fields, etc.

3.5.3. Elementary riechanism of diffuision

The only passage for mass transport in a perfect lattice of a cuvic close-
packed structure interpenetrates the array of tetrahedral or octahedral interstices.
Any discontinuity, such as a dislocation {ine, enables the diffusion to proceed with
more ease than through a perfect lattice. In general, the transport of matter in solids is
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accomplished through the point-defects-wwvalk process and depends unon tle con-
centration and the mobility of defecis. Both these parameters depend on the crystal
structure and large number of published articles have appeared on this”'.

In principle, when two solid crystals are in contact (see Figs. 3.13 and 3.14). the
diffusion of components A and B takes place at the . ume time across the interface AB.
The 1nitial position of this interface (which may be indicated by an 1nert material) will
not change if the rate of diffusion of both components is of the same value. If the mass.
charge and size of the diffusing particles of cach component are different. their
mobility differs also. The amount of the more diffusive component transported per
unit time across the original interface is la-ger and the actual interface shifts, as first
reported by Hartley??, and Smigelshas and Kirkendal®3.

Diffusion may also be affected by the presence of paths formed by any system
of defects. dislocations, stacking faults. grain boundaries, eic. In 1onic crystals, the
transport of matter may also arise because of a difterent mobility of atomic and
electronic defects, due to the influence of an externally applied electric tield. In some
cases, the difference between the diffusion rate of both components is considerable.
In extreme cases, where the transport of one component is high due to the presence of
highly mobile vacancies. deformation of a solid body can occur, as illustrated in
Fig. 3.16. This is caused by creation of pores in the piaces to which the vacancies are
delivered®*-97,

vcogncy defoermetion

T
H
coniaet diffusicn erd due fo pores

rcres fermrat.on

Fig. 3.16. Deformation of two reacting solids due to the Cifferent mobilities of diffusing species (the
dots mark the line of contact).

3.5.4. Prenucleus formation

The formetion of a product phase in a solid-state reaction implies that. at some
stages, entities foreign to the perfect host reactant solid. namely. vacancies. interstices,
foreign atoms or ions. or a simple combination of point defects. must aggregate inio
an ordered array. which ultimately becomes a crvsial of the product phase. Even
though there is no direct evidence for this process, it is clear that the existence of
attractive interactions between defects is a necessary condition for aggregation and
phase separation®®. Point defects, whether interstitial. substitutional or vacancy. will
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tend to display repulsive interactions because of elastic and coulombic interactions.
However. charged simple defects tend to associate with sim,.le defects of opposite
charge, for instance,

(a) Electrons with vacant anion sites (to form F-centres e/[[17).

(b) Anion vacancies with anions of greater charge.

(c) Migration of point defects to dislocations to relieve elastic stresses, etc.

The simple case of an aggregation of F-centres in sodium chloride is demon-
strated in Fig. 3.17 where the prenucleus. marked by a dashed line, is the precursor of
a new phase to form Na metal as it becomes large enough to be thermodynamically

stable.
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Fig. 3.17. Prenucleus formation by ordering of defects.

The nuclei growth is often conditioned by thc existence of screw dislocations
which make possible a rapid incorporation at relatively low concentrations. The
screw dislocations are formed in small prenuclei at the surface of a matrix crystal by
a mechanism wiere the coherency stress is relieved by the generation of dislocations
which intersect the surface and promote the spiral growth®?’. This model also fits
experimental observations for epitaxial growth of reaction products on a reactant
single crystal, where the crystals of product hold certain phase (epitaxe) or volume
(topotaxe) orientation with regard to the host structure. The direction of the screw
dislocation is given by the slip in the product network. If the single crystal surface is
appropriate, then the screw dislocation will emerge from the free surface anJg a
crystal of the product will grow with preservation of the built-in epitaxial relationship.

If a gaseous product is created by a solid-state reaction, the nucleation
mechanism cn the energetically rich points is also to be cealt with. One of the in-
vestigated processes is the thermal decomposition of azides®®. It was shown that the
first step was the absorption of radiation, as a result of which an electron is excited
from the valence band (IN; band) thus producing a positive hole in the N; band and
an electron in the conduction band (M* band). The conduction electron is sub-
sequently trapped to produce the free metal product (M) and the positive hole
associates with a suitable site to give rise to the gaseous product.

It is quite evident that there are additional aspects such as the influence of
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structure, the conditions of experiment, material history. on solid-state reactions
which have not been included in this review.

3.5.5. Interpretation of kinetic equations

A knowledge of the mechanism of the process enables the interpretation of the
rate equation in terms of molecular quantities characterising the system studied. An
excellent example of such ar approach is the Wagner theory of copper tarnishing®* 7.
The reaction in the steady state proceeds in three successive stages:

1) An oxvgen molecule striking the surface of Cu,O dissociates and is
chemisorbed in a monolayer which creates Cu” vacancies and Cu®~ holes.

23 The vacancies and holes diffuse through the Cu,O Iayer to the Cu,0O-Cu
interface. ’

3) Atoms jump into the vacancies and free electrons fill the holes.

Diffusion is the slowest prosess in the reaction and is the rate determining step.
Using this idea, Wagner has derived an equation for the rate of growth of an oxide layer,

ax THOL(x
X ax_ 300 " )atc(tc“+ +15-) dpo, (3.72)
V. dt Fze, + e N }po,(0)
where x = the oxide layer thickness
v, = the volume of Cu,O per Cu atom
. F = Faraday (96 500 coulombs)
hY = Avogadro’s number
eq = elementary charge
Izcu*] = charge of Cu™ ions i
G = specific conductance of Cu,O layer

L transfer numbers
Ho., = chemical potential of O?

boundary is fio,(0) and equals pg,(x) on the Cu,O,;0, boundary.

ions, the value of which on Cu;Cu,O

For our case, 7, for holes is unity, 7, for oxygen equals zero, O*~ does not move
and ¢, for Cu™ vacancies could be measured by an electrochemical technique.

Electrical conductivity of Cu,O depends on the concentration of holes, which
is a function of the partial pressure of oxvgen

¢ =% pgl; (3.73)
where ¢° is the conductivity at po, = 1 atm. Introducing
dyo, = RT dIn po, (3.74)

and using eqn. (3.73), one obtains by integration of egn. (3.72)
x dx 3006°1c,+ RT , 17 177 -
Z2T2 = u ([Po,(x)1" " —[Po.(0)]"7) 3.75
T 2FNeg [Po,(x)] [Po.(0)]" ") ( )

The rate of oxidation must be a linear function of (Po,}"/’. All constants on the
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right-hand side of eqn. {3.75) can be measured directly. The calculated rate of
oxidation is in good agreement with the value obtained from the kinetics measure-
ment. The results represent excellent proof of the suggested mechanism of the process.

From the above it can be seen that the field of heterogeneous reactions is vast*.
and is difficult to classify and describe in an objective manner. It is the object of this
review to satisfy the present need of a more critical and detailed approach to the
physicochemical studies of heterogeneous reactions with regard to the methods of
thermal analysis. Bearing in mind the broader aspects of thermal analysis, it is useful
to include a typical technological appraisal of the above problems.

3.6. Heterogeneous processes under actual experimental conditions

3.6.1. Engineering approach

In the preceding part more-or-less idealized conditions were considered to
analyze the physico-chemical character of the processes investigated. It is possible to
separate experimentally the individual processes as referred to the above-suggested
models. On the other hand. the engineering approach to the description of a hetero-
geneous reaction based on the shrinking unreacted-core model of a system of single
solid particles. is formulated from a procedural, macroscopic point of view!%%-107,
The effects accompanying diffusional and hydrodynamic conditions are super-
imposed on the main physico-chemical process of the new phase formation. Further-

more. the engineers have a more realistic standpoint to the conditions under which
the reaction actually proceeds™.
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Fig. 3.18. Actual temperature and concentration profiles for a shrinking-core model of an exothermic
reaction.

*Sec Note added in procf on p. 443.
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In Fig. 3.18, the actual profile’®? of temperature and concentration for a
shrinking-core model of an exothermic reaction is shown in order to aid in under-
stsnding the actual conditions during a heterogeneous process (compare with
Fig. 3.5). In the design of heterogeneous chemical reactors, the following five
rate-determining steps are basically accounted for (not considering heat transfer):
(1) diffusion of a gaseous reactart across the gaseous film into the solid pariicle
surface; (2) penetration of the gaseous reactant through the layer of inert product
into the reacting interface: (3) chemical-like reaction at the interface: (4) diffusion of
the gaseous product back to the surface; and finally (5) diffusion of the gaseous
product through the adhering gaseous layer. Steps (1) and (4) and/or (2) and (3) are
mathematically almost identical differing only in the sign. In the usual enginecring
terms, the rate-determining step can be found by means of a plot* of the normalized
time ratio, 7/, vs. the ratio of reacting r per initial particie radius r,. The term. ¢, is the
instantaneous time and 7 is the time necessary for total process complection (sce
Fig. 3.19). In addition, it is necessary to take into account not only the mass but also

,.O L T T T
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Fig. 3.19. The determination of five possible rate-limiting steps.

the heat balance which results in a complicated relation, particularly for exothermal
reactions. The best approach seems to be to analyze the effects of the heat of reaction.
mass and heat transfer. etc., on the overall reaction rate of a single particle in the
conventional terms of the effectiveness factor, 7, defined as:

n, = actual (overall) reaction rate (reaction rate obtainable when the reaction
site is exposed to the gas concentration and temperature of the bulk gas
phase).

This effectiveness factor, 7,, is based on the concentration and temperature in the
bulk gaseous phase, which remains constant during the reaction and corresponds to
the dimensionless rate per unit surface of reaction interface. When 7, is plotted
against the fractional conversion, z. of the solid reactant, the thermal instabilities and
the transitions in the rate-controlling phases, provided they exist. are easily pointed
out, as shown by Ishida and Wen'?°. Furthermore, a positive slope of the x vs. 7,
curve (dn,/dx>0) indicates the existence of a geometrical instzbility in which the
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reaction interface may become uneven and the shrinking-core model may not be
applicable.

3.6.2. Thermat conditions during heterogeneous processes

The processes considered in the preceding sections can proceed under various
conditions given by both the time and space distribution of temperature throughout
the system investigated. In principle. the following four cases may be distinguished:

(I) The temperature is constant in time and uniform throughout the system.

(2) The temperature is time dependent {e.g., linearly or inversely proportional
to itme) but is independent upon space coordinates in the system.

(3) The temperature is not dependent upon time but is a function of the space
coordinates in the system.

(4) The temperature varies with etther time or the location in space coordinates.

The first two cases are convenieni for ordinary kinetic studies, as the process can
be rezlized by a defined path. It is. of course, to be taken into account that there arises
an irevitable difference between the desired and actual experimental conditions!!5.
Actually, the first approach is the groundwork of “classical™ isothermal techniques
o- investigation while the second, which is not widely accepted as vet, will next be
consicered in detail'%3-103,

In connection with the last two points, it seems necessary to stress the thermal
instability of some exothermic heterogeneous reaciions studied under non-isethermic
conditions. As an example, the combustion of solid and/or liquid fuels and some

special types of the reduction by hyvdrogen (FeS) or the oxidation by oxygen {(ZnS)
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Fig. 3.20. Schematic diagram c? rate of heat generation against temperature (see text).
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may serve. This thcrmal instability was first pointed out by Van Heerden'®* while
studying different types of solid-gas reactions and later analyzed by Cannon and
Denbigh'®>. In the case of the ox:dation of ZnS, two main points should be noted:

(1) The way in which the curves of heat generation and heat loss intersect each
other.

(2) The variation of the impedance of the reaction product build up against
heat loss passage.

A schematic diagram of the first case, as illustrated in Fig. 3.20, shows the
sigmoidal shaped curve of heat generation and the lines of heat loss for an exothermic
solid-gas reaction as a function of temperature. At lower temperatures, the heat
generation is controlled by the reaction kinetics and the temperature dependence is
exponential. However, at higher temperctures the diffusion through the product laver
becomes the rate-controlling process and the rate of heat generation is almost
temperature independent. If the rate of heat-loss is rapid, the line of heat loss inter-
sects the heat generation curve in the region of comparativelv low temperatures
(point S) and a stationary state is established where the rate determining process is
the phase-boundary reaction. Similarly, at very low rates of heat loss {point B) the
stationary state is also attained with the diffusion as the rate-determining step.
Within the region between points E and G, ihermal instability is then created (see
dashed lines). Although at point F heat loss is equal to heat gencration, it is a meta-
stable point in the sense that any small decrease of temperature at the reaction surface
will cause the system to fall to point E and any small increase will cause the system to
rise to point G. Both changes are accompanied by a sudden change in the rate
determining process. It can also be seen that only one crossing point exists when the
temperature of the surrcunding gas, 7%, is either extremely low (T.) or extremely
high (T;) (see dotted lines parallel to ﬁ). Criteria of this instability are given by
Aris'®® and Wen and Wang°”.

The second cause of instability can be the growth of the product laver!®®. A
small deviation in the layer thickness tends to expand, resulting finally in ar auto-
catalytic type of the layver build up. With the shrinking core of particles, the generation
of heat is decreased, but, at the same time, the rate of heat loss is also decreasea due to
the increasing thickness of product layer. If the second phenomencn overcomes the
first one, the interface temperature is elevated up to the point where the system
becomes unstable.

Note added in proof

For comparison see also the classification made from the viewpoint of metallo-
graphy: spinodal and eutectoid decompositions, precipitation from solid solutions,
ordering reactions, martensitic, bainitic and massive transformations (C. W. Wayman,
Ann. Rev. Mater. Sci.. 1 (1971) 185) and/or the approach which considers the
equilibrium background in solid-state kinetics: invariant, variant and permanent
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processes starting from a stable or metastable initial state, processes characterized by
multiple parameters and combined processes (P. Holba and J. Sestak. Proc. 6th
Czech. Conf. Therm. Arnal.. October 1973, SVST, Bratislava. 1973. pp- PI-PI12).
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