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4. STUDY OF THE KINETICS UNDER NON-ISOTHERMAL
CONDITIONS

4.1 Fundamental problems

4.1.1 Principles of kinetic data evaluation

The description of kinet'cs presents the problem of finding the dependence of
the reaction rate on the parameters which define a given system. As far as heterogene-
ous processes involving solids are concerned, there are a large number of parameters
to be considered’; they are temperature, pressure. composition of the system, the
size and distribution of particles, etc. In most cases, the effect of the individual factors
is studied separately.

When studying heterogeneous processes, there aris2s a difficulty due to the fact
that the process may not be monotonous, i.e., no single process can be taken as the
rate controlling process in the entire region of investigation. In most cases, during the
initial reaction step, the rate is determined by the nuclextion of a new phasc; during
the later stages, it i1s determined by the growth. The velocity, however, is controlled
either by the phase-boundary reaction or by transport of reacting species. In these
cases, the kinetic analysis is directed to arrange the experimental conditions in such a
wav as to make possible the investigation of kinetics of a single partial process.

If the required experimental conditions are met, satisfactorily, then the rate of
the process, r can be described by the two functions

r= dz _ k(T) () @.1
dit

where the first function k(7), is only temperature dependent, while the second one,
f(xz), is a function of the instantaneous phase composition of the system in question
provided that the composition can be represented by the conversional transformation,
x. It is the task of empirical kinetics to find the analytical form of both functions;
that is, to determine the so-called kinetic parameters. Provided that all other possible
variables are held constant, the thermodynamic process or simply process, is deter-
mined by the two quantities, x and 7, as a function of time [x = Z(r), T= T(z)]. Their
time profile is investigated experimentally.

The most common experimental method is based on the investigation of the
isothermal course of the process, that is, on an expenmentally determined dependence
of x = &(r) at T = const. for a set of temperatures. Upon integration, eqn. (4.1) yields

-

* dx
—_— = . = k . 4.2
JO i = E@ =KDt (4.2)

The linear dependence of g(x) on r makes it possible to find by way of trial and error
the function which best corresponds to the experimental data, x = Z(r). When defining
the form of the thermal dependence of k(7), the Arthenius re:ation, Z exp (— E/RT),



448

is usually the most convenient and the constarts, Z and E, are determined by graphical
plotting log k(7)) against reciprocal temperatare, (1/7T).

The realisation of an isothermal measurement is based on the assumption that
the initial nonequilibrium state of the system (the required onset of the process
investigated) is obtained before the investigated process can advance to 2 measurable
degree of transformation (the actual onset of the process). With heterogencous
systems, this requirement presents a number of experimental difficulties. As a result
of fast heating, which is necessary in order to reacn the desired working temperature,
there arises a variable temperature gradient in the sample (a non-uniform distribution
of temperature) so that the process becomes non-isothermal and thermally uncon-
trolable. This is particularly true for heterogeneous proccsses which arz brought to a
temperature which is far from the equilibrium tesaperature.

These obstacles can be avoided by usirg non-isothermal methods of investiga-
tion where the time dependence of temperature is intentionally programmed, fre-
quently in a linear manner. Naturally, ths temperature gradient still exists but it has a
uniform character.

Upon the integration oi eqn. (4.1), the following relation is obtained

x - T -
L @ - | KD g7, (4.3)
Jo (=) Teqg @

-~

1 niiS sciution can be rewritten in the general form

x=x(t, §). 4.4)
After algebraic manipulation
dx _ (6_5) - (fj_&) dé (4.5)
dz 0T /¢ co/rdT
and because d¢/d7 =0 (¢ = constant), then
d_ﬂf:(a_i) -4z dt _dz 1 (4.6)
dT 0T /e dt dT dt ¢

The same approach may be used for any type of heating (quadratic, hyperbolic, etc.).
The same course can be adopted for the class of isothermal processes expressed
by eqn. (4.2), the solution of which may also be written in explicit form

x=ax(1, T). 4.7
It is formally valid that
de ct/r oT /: dt ot/r

as under an isothermal measurement the temperature is constant, and thus, d7/dr = 0.



449

The rate of a process being defined by eqn. (4.1) or

dx ox cx dx
—_— =t{— =f{— X =—Xo. 4.9
dt (at)r <6T)¢ ¢ dT “9)

Recently the work of MacCallum and Tanner? has initiated rather extensive dis-
cussions®~!'® concerning the correctness of the mathematical treatment of data
obtained under non-isothermal measurements. The equation

ci ca\ d
dx _ (E) . (93‘.) ar (4.10)
dt .Gt /1 0T /: dt
became the center of discussion; the question was how to interpret the individuai
total and partial rate terms. It should be noted that this equation resulted from the

derivation of a general equation, x =4(7, ), and it is necessarv to investigate its
origin. It can be understood in two different ways:

a) As a funciion describing the given process in the system that obeys eqn. (4.1),
which may be rewritten in the general form 2 = F(%, 7). Hence, for a given temper-
ature-on-time dependence, the functioi, 4, represznts the solution of the differential
equation (4.1). This solution is dependent on the manner of temperature program-
ming. Thus, for a constant heating rate, ¢, the solution is x = (7, &) (see eqn. 4.4).
The expression is easily rearranged as follows: x = (7, 7/r) = 4(¢, T). This clearly
demonstrates the difference between the functions denoted % and Z, as well as between
the meaning of their partial derivatives. This is also discussed in detail by Sestik and
Kratochvil '°.

b) As a true constitutive equation, where the function dependence % is valid
invariably for any admissible process given by [x =2(*); T = T(1)]. which the con-
sidered system undergoes. However, such a description would physically correspond
to a material controlled by an internal clock, such as 4 material undergoing a spon-
taneous ageing. This, naturally, does not seem to be the case for an ordinary chemical
reaction as treated by standard methods of chemical kinetics.

The above is worth mentioning as it indicates the importance of properly
defining the limits of different approaches. It shows the differenc2 between the consti-
tutive equation established on one hand by long experience and/or of a suitable theory,
and the admissible processes measured experimentally. The best framework for such
considerations, however, uses the concept of rational thermodvnamics® .

4.1.2 The integration of the kinetic equation under non-isothermal conditions

Beside a knowledge of the proper form®:1? of the functions k(7)) and f(x), the
integraticn of eqn. (4.1) requires also the analytical expression for temperature
programming. For a non-isothermal system?, the relationship between the tempera-
ture, 7, and time, 7, is given by

dT/dt = oT™ (4.11)
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where d77dr is the heating rate and ¢ and m are constants. Hence,

F dx T k(T)
= = = — 24T = P(T 4.12
ot g(2) | e (T) (4.12)

where the functicens, g(x) and P(7), depend only on the fractional conversion, z, and
the temperature T, respectively. The integration limits are chosen in accordance with
the beginning of the process. A choice of T, based on the view that the start of the
heating is identical with the commencement of the kinetic investigation is misleading,
since it can even result in the arbitrary choice of 7, equal to absolute zero. The process
of integration of eqn. (4.12) is carried out on two different levels. Establishment of the
function, P(7), is mathematically complicated but is based on the known form of the
k(7)) function given as the Arrhenius exponential-type equation®. The problem of the
integration of the left hand side of eqn. (4.12) is quite different because the function
f(x) is usually not known.

4.1.2.1. p(x) function (integration of the Arrhenius equation at rising temperature).
Concerning the integration procedure, the simplest method would be to employ the
linear variation of the reciprocal absolute temperature®?~'>

T t1;T P
. To ¢T- 1/To ¢ RT/ T

-

- Z_E[_E(L__‘>] (4.13)

Ro R\T T,
where Z and E are the kinetic parameters to be determined (the pre-exponential factor
and the activation energy respecitively). Such experimental conditions are not currently
available, although this idea is worthy of consideration’® with the advent of sophisti-
cated furnace temperature controllers. Unfortunately, from the viewpoint of the

present mathematics, the most common experimental approach used thus far requires
a constarnt heating rate, ¢. It yields the linear temperature proportionality with time

T=T,+3t andjor dT/dr=¢ 4.14)

As already noted, the temperature, 7. is the lower integration limit from which the
temperature increase holds a real meaning with regard to the investigated process.

Values of the exponential-integral, E;(—x). or of a related integral called the
p(x) function'S, are essential to the analyses of these thermal processes. In order to
find a suitable analytical formulation, it is convenient to introduce a new variable,
u = E/RT. Hence, combining eqns. (4.12) and (4.14)

T exp (—u) du]; (4.15)

x u

- K]

1 (T exp(—u) [exp (—u)
el ek S PO (B 3o S
3 ) T |

xo u u
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Because Z;(—x) is defined as -—,j"” exp (—u) duju. we may write

[=exp(—u)  _ exp(-x)

. — Ej(—x) = p(x) (4.16)
where the new function, p(x), has been introduced on the basis of work by Akahira’®,
Doyle?9, Satava?! and Vallet>2. Although eqn. (4.16) cannot be expressed in a closed
form, there exist several series for its approximation*. They are:

(1) For x> 16, through integration by parts

exp(——x)[I 2t 3t +(—1)"(n-§-1)!]

p(x) = 3 4.17)
X

3 - -

X X X

(2) For x> 15, according to Schlomilch?3

p(x)=‘ﬂ:i)[1_ LI 1 PR G A ] (4.18)
x{x+1) x+2 (x+2)(x+3) (x+2)...(x+n)

where An is a specific constant!”,
(3) For x> 10, according to Taylor’s formula:

p(x) = ‘M[o-snﬂnx“—x PR SR ﬂi] (4.19)
x 2x2! nxn!
(4) For9<x<l174
exp (—x 674.567 +57.412x—6.055x" —x*
p(x) = =P )( > - . 4) (4.20)
1699.066+841.655x+49.313x“—8.02x> —x
(3) For 20<x<60, according to Doyle**
log p{x) = —2.315+0.4567 x. 4.21)

Although asymptotic series are divergent, a limited number of terms of the
scries can be used to calculate a value for the p(x) function to an accuracy which
depends on x and the number of terms chosen. This was first discussed by Akahira!®,
Dovle?®, and later, in more detail, by Biegen and Czandera’® and Gyulai and
Greenhow”€®.

*If the pre-exponential factor, Z, is assumed to be linearly dependent on temperature, Z2=2"T,
then??

o = — ZEP X
£ 24R*
, .
where prlx) = M(_Hx 1o-6 _ 0001029 1.9481/65-“)'
X X X

A table of log p’(x) functions was composed to investigate the effect of tempernture dependence by
Valiet2* who also derived expressions for Z = Z’"7T*/? and corresponding formula for p”(x) function
calculations.



The tabulations of the E;( — x) function are given by the following investigators:

Akahira'® [x = 20(0.01)30]

Harris*” [x = 1{(1)4(0.4)5(1)50]

Miller and Hurst® [x = 0.2{5.05;5(9.1)10(0.2)200.5)5¢(1)80]
Glaischer and Caylay®®  [x = 0.01(0.01)5(0.1)15]

Jahnke and Embde3° [x = 0.01{0.01)1(0.1)15]

Abramowitz and Stegun3! [x = 0.5(0.01)2(0.1)7] and

USSR tables>? [x = 0.0001(0.0001)1.3(0.001)3(0.005)10(0.1)15]

and many other tables®?733,

The function p{(x) was calculated by:

Doyle° [x = 10(1)50]

Oberiander>® [E = 0.2(0.2)0.2 T = 25(25)1000: 150(10)390]
Zsako3? [E = 10(2)66, T = 273(10)600]

Biegen and Czandera®® [x = 13(0.1)30]

and others such as Vallet®2, Smith and Aranoff®%, Redhead??, Satava and
Skvara*?, and Flynn and Wall'?; computer programs are also available?¢-42-303,

Because there is insuflicient range and detail in the value of x to permit analysis
of thermal processes in a wide region of x’s, the tables of p(x) function in the region,
E=7(2)145, T=273(10)1773 are given in Appendix I. A Tesla computer and Fortran
language*%? were used to sum the series in eqn. (4.20) with a reported error of less than
1077,

Integrating eqn. (4.12) for the case of a constant heating rate, ¢. the expression
is obtained

ZE E E
(o Y 4.22
&) = qu[( ) P an)] (422

where Z, E, R and ¢ are the temperature-independent constants and 7, is the equi-
librium temperature for the process. For 7> 7T,,, the second term in the square
brackets is negligible with respect to the preceding term and egn. (4.22) is simplified
to Doyle’s equation?®

ZE_(E _
g(x) = (‘_) (4.23)
R¢

Other cases of non-linear heating have been developed for the study of the ageing of
insulating materials®*+-1°%_

*A gencral casc of non-programmed temperature variation is exponential-like. 7= Ty —(T1ia— To)
exp (—qr). where Ty and Ty, are the starting (0) and final (fin) temperatures. This course of tempera-
ture is often met in the first period of isothermal experiments'” or in the investigation of electrical
insulators'#-'%. Hence, the heating rate between the start of heating, 7o, and the onsect of the final
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4.1.2.2. Empirical kinetics (choice and integrarion of simplified model relations). If
only a formal description of the process is the aim of the investigations then it is
satisfactory to fulfil the mathematical requirement of eqn. (4.12) by a simple function
f(%)!, in the most simple form!?,

f(2) =(1—2)" (4.24)

where 7 is the exponential factor, sometimes called the reaction order, in analogy with
homogeneous kinetics. This factor has a purely empirical significance and is by no
means a universal constant for heterogeneous reactions’->°, In contrast to homogene-
ous-like kinetics, fractional or even negative reaction orders. n, are often observed.
However, this concept has proven useful as a means of classifying a limited number
of solid state reactions (phase-boundary controlled processes where n=0, 1.2, 1/3
and 1) and so may serve as preliminary information to the reaction kinetics!. Further-
more, it is found suitable for obtaining a measure of the change in the kinetic processes
when comparing a series of experiments conducted under different conditions which
is usually the case with engineering investigations.

The above form of the function, f(=«), cannot describe the kinetics of diffusion
or nucleation and or nuclei growth. The latter can be fitted by the Johanson-Mehl-
Avrami-Yerofeyev-Koglomorov equation™!,

a(x)= —In(l —x) =ktr (4.25)
The function, f(x), can be derived from eqn. (4.25), or

f(x)=(1—z) (—In(l —=x))? =Kk*¢ (4.26)
where k* = rk‘*/" and p = 1 —(i/r). This equation contains the poiynomiai characier
of the expression. Upon expansion, eqn. (4.26) may be transformed into the iorm™ 2%+

(I—2)(—In(I=0)VP = (go+a;2+a, %%+ ...) (boxP + b, 7P P b, aPT 2+ )
.

t

7

and finally rearranged as

18]

Q)
v

+ -
=cotPte;#P T o xP T =™l —2)" (4.

where a, b and ¢ are censtants and the values of the exponent-factors p and n are
given in Fig. 4.1. These two-exponent tvpe equations (4.27) and (4.28) demonstrate
well the similarity of different kinds of matlematical description and the unnecessary
use of any more complicated (e.g., three-exponent) expressions~*. They represent a
more generalized form of egn. (4.24) by adding the function «™.

required temperature, Ty, is given by d In 7,dr = ¢ = const. (m in eqn. (4.11) is ecqual to ene). The
integration of the rate cquation, after the substitution for the function variable, gives

\
E ( —qt)
u = exp .
Tee = ATee. — Tn) R
sic AY " g v \ /

An exponential integral in the form
El(—xY—exp {(—x. . YE{x;;. —x)
bt AN 7 e r o~ LRV A i) -’

for x = EIRT and xq;, = E/RTa is then cbtained.
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Fig. 4.1. Piot for determination of cxponent factors n and m from known value of r.

This generalization can also be made by introducing a function of time f * (1), as
a multiple to the simple function, f(x), in eqn. (4.24). It was found empirically that an
equation of the following form is mathematically suitable to describe a variety of
reactions™?

dx + r—1 n + +

— =kTT (=) = kT ()T (1) (4.29)

d:

It should be noted however. that £¥ is not a true rate constant because it is
defined inconsistently by an equation involving both variables x and r. Therefore,
such an expression is not capable of vielding comparable values of kinetic parameters
unless ean. (4.29) is mathematically transformed into the dependence on either
variable, = or 7. It may by accomplished, for example, by dropping the so-called
impingement factor. (I —x), from eqn. (4.29) to give®*!

dx'dt ~ ¢ "' and therefore x = t"ir (4.30)
hence,
dojde = AT = 4™ (4.31)

It is plausible that eqn. (4.28) also applies to the case described by eqn. (4.29) by re-
introducing (I —2)" into agn. (4.30).

The following alternative rate equation®® is of more general utility

da

&— = ka™(I —0)"(—In(1 —2))? (4.32)
t
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where m, n and p are empirically obtained exponent factors, one of them being always

Tzaas

$3,43,46

ZEero

In some cases it is more favorable to express the function f(x) in the form of a
:g the experimental data. This is
useful when a numerical derivation is needzd'”? and/or in polymer chemistry!® 1o

polynomial with a suitable number of terms, as given by eqas. (4.27) and (4.28), and

to determine the individual constants (¢’s} by t

72!/? 1)

describe various types of depolymerizations, e.g., 6(x'/2 —x);
4

60
31

(13": +x—
4

and/or
24( 3. 2 T« )
-—lxr+a"—-——=1
13 4 4
A more exact approach, which enables the determination of the most probable

rate-controlling processes, is based on fitting experimental data with a known model
relation, g(=x) (ref. 47) (see Chapter 3). The most suitzble function, g(), is found by a
trial and error method from a set of case-models corresponding to the appropriate
reaction mechanisms'-*%~*_ This is perhaps the best method fcr obtaining the
reaction path because such data provide the first information to direct the consequent
experimental study in order to explzin the detailed reaction kinetics and mechanism.

For details of this approach, see section 4.2.3.
4.1.3. Influence of kinetic parameters on the shape of non-isothermal curves
The shape of non-isothermal curves is aifected by both the model relation, g(«),

o
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Fig. 4.2. Effect of the change of individual kinctic parameters on the shape of the original! non-
isothermal curve®!, where E=27x103 cal mole~*, Z=10'2s~!, ¢ = 3.18°C/min, 1(x) == (1 —x) /2

(see text).
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reflecting the reaction mechanism and the kinetic parameters. £ and Z, characterizing
the temperature dependence of the reaction rate. The term. g(z), reaches the value of
unity for x approaching cne (cr for x = 0.5, g(x) = 10™ ') and therefore, the right-hand
side of eqn. (4.23) must also be of this magnitude. The effect of these phenomena on
the so-called integral curves is graphically demonstrated in Fig. 4.2, assuming a
simple process propagating far above its equilibrium temperature. The constructions
of TG curves by Doyle?® and Satava®! was discussed first by Flynn and Wall'®,
Sestik®!. Ozawa’?, and Iater by others®®-?2~7°_ Mathematically, the changes in eqn.

(4.23) may be induced by*':
(a} the change in the multiplying constant, EZ ¢R,
{b) the change in the function, p(E’RT).

{c¢) the change of model relation, g(x).

com: -
- c; s,

o) P 4
~C0 7w}

Fig. 4.3. Graphical demonstration of the influence of the individual kinetic parameters on shape and
position of TG curves, where E=2%i0*calmole ™ ?; Z=1x10%; §=1°C/min. g(xj) = 1 —(1 —x}***
if not specitied differently.
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For the first point, maintaining a constant value for g(x) (= 1), if Z is decreased by
one order of magnitude, then the value of the function, p(E/RT), must accordingly
increase by one order of magnitude to maintain the required balance between the left
and right hand sides of egn. (4.23). This is only possible by the shift, E'RT —
E/'R(T+ AT). Alternatively, the change in £ by ten per cent docs not greatly affect
the multiplving constant, £Z: R¢. but it substantially changes the value of the function,
p(E/RT). This variable must be compensated thus: E/'RT =(EGAE)R(T+AT)
(sce Fig. 4.3). It can be seen that the changes in the kinetic parameters, E and Z, are
closely related and mutually supported and may be compared to the corrclation
beiween tl = pre-exponential. entropy-like term, and the exponential, energv-barrier
term. in the original Arrhenius rate constant (see section 3.2).

In an opposite manner. a similar procedure can be adapted to enumerate the
effect 6f operational variables®! (changes in the measured temperature and heating
rate) on the vzlue of calculated kinetic parameters. Since the temperature detected
experimentally is usually higher than that inside the reacting sample, higher values of
the kinetic parameters are to be expected. or, T+ A7 = >E+AE and'or T+AT =
> Z + AZ (accompanied also with a slight increase of E). Consequently, the deviation
in the heating rate, ¢, by ten per cent influences the multiplication constant only to a
small degree but brings a comparatively larger change in the p(x) function and
increases the curve slope and curvature (see Fig. 4.3). Uncertainties in the measure-
ment of 7 and ¢, together with a possible error in %, are essential for the accuracy
with which the kinetic parameters, E and Z, are determined. On the other hand. the
appropriate choice of the function g(x), see point (3) (as well as the function k(7)
in eqn. (4.1)) determines the correctness of the kinetic parameters (i.e., whether these
kinetic constznts are attributed to the true rate-controlling process).

The effect of kinetic parameters on the shape of differential curves was calcu-
lated by Jiintgen and van Heek>? using the equation,

d_V — g xp<—E\{;,'

= [+ — .
dT ¢

\ AL -
\ “ry (4.3.7)
RT) 7
where V is the volume of gaseous product liberated in time 7 2nd V' is volume of the
product finally obtained. After integration of eqn. (4.33), and intreduction of the
p(x) function, the following set of equations is cbtained for the discrete values of
reaction order, 7,

n=0, d¥Vjdi=A4 (4.34)
1 -~ 1-152
dt 2¢ RT/
. \-
n=1, d—p——AVmexp —%p(ij (4.36)
dt ¢ \RT/
; J-2
nez, a2, (E) 437
dt vi2 26 \RT/]
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where A is a constant. The diagramatic representation of the above equations is given
in Fig. 4.4. Similar calculations were made for DTA curves®? first by Reed et al.1%2
and recently also correlated with regard to the kind of rate-controliing processes®!
(see section 4.4, Fig. 4.21).

A0 100G 1250 soc  Tiwl

Fig- 4.4. Graphical demonstration of the effect of individual kinetic parameters on the shape and
position of effiuent analyses (i.e., derivative) curves, where Vy;=20cm3, E=5x 104 cal mole—1,
Z=10"°cm>* " min~*!, ¢§=3°C/min and f(z) =(1—2)" for n=1 if not specified differently
(according to Jiantgen and Van Heek3%).

4.1.4. Experimental conditions and significance of calculated kinetic darta

The most important problem arising in the study of heterogeneous process
kinetics is the precise definition of both the initial state of the system and the con-
ditions under which the experiment is conducted. For exactly determined conditions,
the path between the initial and the final state of the system is given only by the
properties of the material investigated. If the goal of the investigation is a technological
application of the process studied, then the initial state and experimental conditions
duplicate the actual operational conditions. Such a case may be a pilot-plant type
reactor so that the laboratory determined time course of the process corresponds to
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that to be expected in an actual plant process. The main interest is probably directed
to the energy consumption and not to the elucidation of the reaction mechanism. In
general, kinetic studies are usually intended to verify theoretical assumptions about
the physico-chemical nature of the process and to find a reaction mechanism whic}
holds for constant conditions influencing the reaciion rate {pressure, temperature,
conceniration, ctc.). Using TA methods, the characteristic elevation of the tempera-
ture brings into consideration the problem. of holding constant experimental condi-
tions within a certain temperature interval. For transitions in condensed systems, the
required conditions are readily put into use, as shown n Fig. 4.5a. In the case of

pt p

) 1) Wor(s) [ (g3
/

fa) T {58 T

Fig. 4.5. Graphical representation of conditions of a process accomplishment.

gaseous products, the simplest method is given in Fig. 4.5b which is also suitable for
multicomponent systems forming no solid solutions (decomposition of carbonates,
metal salt hydrates, etc.).

In the case of the formation of solid solutions and/or new chemical compounds
in multicomponent systems, the relations become quite complicated®7-¢72. The corre-
sponding non-isothermal fractional conversion, 4, is then composed of two com-
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Fig. 4.6. Threc possible tvpes of processes differing in their temperature dependence for a binary
system?®.
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nonents. The first component relates to the entire kinetic process and equals the
normal fractional conveision of the corresponding invariant process. «. The second
component, /. reflects the propagation of equilibrium (tke shift of the final state)
with a temperature increasc. The non-isothermal degree of conversion for variant
processes, /, and the equilibrium advancement for the process. 2.,, can be defined by
the relaiionship introduced by Holba and Sestak®.

L= A g (4.38)
It can be applied to the case of melting in binary phase diagrams, (Fig. 4.6) where
components A and B form a solid solution (s.s). Three typical processes may be
distinguished. according to Fig. 4.7. The normalized change of the equilibrium

Equitibrium
sdvencement
for the process .
., . invariant ivgrignt
Aeg deq regon _ Aeg! regen _
’,r’ { "l—
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r ks
i ']
H l !
; ;
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. _,’ T
T L T
mnvariant comnbined vorant  ——

Fig. 4.7. Diagramatic representation for the course of the degree of conversion on temperature for
threc systems. The full line represents conditions of an infinitesimally slow heating (equilibriem

curve), the dashed line represents conditions of a definite heating rate (real curve).

advancement. Z_,, quantitatively describe each of them using the lever rule®. It is
evident that only those processes may be described by the normal kinetic equation
which have an invariant character (a temperature-invariant final state), or for which
the variant temperature region is small and so the onset of the kinetic investigation lics
at a temperature above this region. In all other cases a knowledge of the temperature
dependence of 4, is required in order to satisfy the universal non-isothermal kiretic

equation,
dé 1 fdi dIn/'.q>
—_ = = ——9) =k f(x 4.39
dt i \dt ®ar (DI 3%

given by Holba and Sestak®. This expression is valid for the case where f(x) represents
a process mechanism, which is independent of temperature, and where the left-hand
side of eqn. (4.39) signifies the modified rate of the process, d&/dr. In a practical sense,
it is applicable to the processes of dissociation and oxidation of quenched oxides and
alloys.
In the case of coexistence in time of processes which develop within a wide
temperature interval, it is clear that a superposition of processes is to be expected. If
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the conditions of the experiment are precisely defined the corresponding plot of
/eq VS. T can be realized even for such a combination. It should be emphasized that
owing to insufficient choice, definition, and constancy of experimental conditions
during an experiment, an unwanted superposition of processes may be creaied. As an
example, the combined process of evaporation and boiling of water in Fig. 4.7b. The
plot of 7., vs. T may be of assistance in separating simple processes by a suitable
modification of experimental conditions. It is important for the physical meaning of
the kinetic parameters subsequently evaluated since these relate only to simple pro-
cesses.

The determination of the function, g(x) and/or f(x). requires certain assump-
tions pertaining to the character of the initial system. The experimental set-up of the
system investigated should comply with the hypothetical-case-model, for example,
the Jander equation for three dimensional diffusion (section 3.4.4) is valid only in the
case when the particles of one reacting component of a po'vder mixture are at least
10-100 times larger than the particles of the second component. Besides these geo-
metrical requirements. the hydrodynamic conditions on the reacting interfaces are of
great importance (section 3.6.1). The transport of maiter and;/or energy may become
the rate-controlling process or at least a part of the slowest process. By a suitable
choice of experimental conditions it is possible to investigate the individual regions
where an elementary process has the most determining character. Practically, the
tendency is to exclude the transport processes by means of thin layers of solid sam-
ples®!:*% in good contact with large heat reservoirs in order to facilitate the heat
exchange between the sample and its holder and also to minimize self-heating and/or
self-cooling phenomena®?-°%.

The mass transport in the surrounding fluid phase may also serve as an efiective
impedance factor. High velocities of flowing gases and, or low, well-defined pressures
are thus desirable. The latter method is more convenient in TG experiments because
of the difficulty in obtaining well-defined conditions of a gas stream along the solid
sample surface. From this viewpoint, the recommended method of studyving processes
on phase boundaries is a continuous gas evolution analysis of a fluid-bed sample.

Another problem is the real physical meaning of the calculated k netic para-
meters. Beside the requirement of a known mechanism, the best examples of kinetic
constants comprising individual rate determining processes may be the case of the
complex activation energy for nucleation and crystal growth (see sectior 3.4.3 and
Table 3.6). The latter is composed of two thermodyvnamic work terms associated with
the formation of new phase stable domains and with the accomodation of product
species in the growing lattice and of the terms arising from the kinetic barrier to
transport. Relatively high values of such activation energies determined for crystalii-
zation processes in glasses (about 100 kcal/mol) may be basically explained by the
large contribution of the activation energy for diffusion®?. The activation energy of
glass ionic (d.c.) conductivity determined just below the crystallization region may be
of assistance in further analysis.

In some Instances it is of value to compare the results obtained under isothermal
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and non-isothermal conditions®*~°¢. Although the former techniques involve the
difficulty connected with the precise determination of onset temperature, in com-
parison with a non-isothermal method, :t provides more information necessary for
a detailed determination of the reaction mechanism. Assuming a constant function
g(2), the correlation between these two techniques was made by Doyle?* and later
improved by Szako®3 who estimated the isothermal data from thermogravimetric
data. If samples of the same geometry and degree of subdivision are subjected to
isothermal and non-isothermal TG measurements under otherwise identical experi-
mental conditions. then identical values of x and g(x) are obtained. The isothermal
ageing time, ¢;, and the absolute TG temperature 7 ;, at which the same value of x
occurs are related by

E  0434E
B S 2 Iog P

: ; (4.40)
$R  RTiso RT;

b4

fo = log

1

i

wheare Ti5c is tite absolute ageing temperature.

Generally there has been good agreement beiween the parameters calculated
by both methods*33-64-66.131.1313 ypder comparable experimental conditions.

Schneider®8-%9 has reated the interdependence between the observed effect of
the degree of conversion and the heating rate on the apparent activaticn energy of
poiymer thermal dc gradation reactions using TG methods. It was shown that complex
chain reactions, which occur in non-statonaryv TG conditions, always display such
influences. By extrapolation of the obtained apparent activation energies it is possible
to deduce the activation energy of initiation while the values corresponding to the
maximum reaction rate lead to the activation energy for quasi-stationary reaction,
comparable with that obtained under isothermal reaction conditions.

4.2. Methods of kinetic data evaluation

The determination of kinetic parameters and model relations is made from one
of the ~xperimental expressions: 2 = Z exp (— E; RT) f(x) or g(2) = (ZE/R¢p) p(E[RT).
The first methods are called differential types while the second are integral. Such a
classification is not completely consistent because some of the methods of evaluation
use combinations of both approaches.

4.2 1. Historical development of applied non-isothermal kinetics

In spite of a surprisingly e<tensive literature prior to 1960 on non-isothermal
methods of kinetic data evaluaiions, this fierd was long ignored by chemical kine-
ticists®*. Accordirgly, the pio ieering work in non-isothermal kinetics remaired rela-
tively unknown. The first attention to the neglected literature was given by Flynn’%;
due to the large amount of work by many authors, attention is called to the following
reviewsl 7.19,70,7 1'
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The use of thermal analysis to measure reaction rates dates to the work of
Bruylants in 1911. A major contribution was made by Akahira in 1925 who also was
the first to publish tables to evaluate the p(x)-like function. Urbach (1930) introduced
an equation for the maximum of the glow curve derived to evaluate the first order
kinetics from inflection points. In 1932, Skramovsky pointed out some advantages of
non-isothermal methods. Vallet (1935), Sherman (1936) and Brietmann (1937) dealt
with the temperature dependence of the reaction rate by improving the use of the
p(x)-like function. In 1948, Randall-Wilkins and Garlich-Gibbson developed a
theory of glow curves while Harton used the numerical approximation of p(x)-like
functions. Segawa was the first to calculate activation energies from the following
equaiion (where j iIs an arbitrary point)

/ .
log k; = log [(d:z(—d)T),:I = log g -3 3ER (%) (4.41)
x); 2. -

J

In 1951, Van Krevelen, Van Heerden and Hutjens made a comprehensive analysis of
integral methods and published nomograms for kinetic data evaluation. Richter and
Vallet (1953) applied non-isothermal kinetics to the CaCQO; decomposition, while
Bohun (1953) was the first to evaluate the activation energy from the variation of the
maximum temperature with the heating rate. The most extensive development took
place in the next ten years, for example: 1955 (Boersma; Murray and White; Baur,
Bridges and Frassel; Gaensslen and Mazackenzie); 1957 (Borchardt and Daniels; Berg;
Frentz; Koftsad; Jongi; Tsuzuki and Nagasawa); 1958 (Freeman and Carroll; Dane$
and Ponec; Smith and Arranof; Hcogenstraaten); 1959 (Barrer and Bratt; Whitman;
Lumme; Anderson; Kissinger; Vallet; Blumberg); 1960 (Murgulescu and Segal;
Newkirk); 1961 (Doyle; Garn; Markowitz and Boryta; Satava; Jaque, Guichon and
Gendzel; Wendlzandt); 1962 (Flynn; Wall; Lukaszewski; Franck and Sizmann;
Turner, Schnitzer and Hoffmann; Reich: Berlin and Robinson; Kwong-Hwa; Proks;
Redhead); 1963 (Horowitz and Metzger; Anderson; Friedman; Sestak; Haber,
Rosicky and Skramovsky; Lee and Levi); 1964 (Piloyan; Coats and Redfern; Mag-
nusson; Fuoss, Savler and Willson: Savin; Rezniczenko; Ingraham and Marier;
Tratore; Rabovkyi; Nikolayev; Schneider; Szekely); 1965 (Brindley, Achar and
Sharp; Hughes; Szako, Chaterjee; Jiintgens and Peters; Fatu; Rogers and Smith;
Lutter and Gerbach; Osawa; Bohon; Reed, Weber and Gottfried; Heide); plus other
numerous titles in the recent literature. The first comprehensive reviews in non-
1sothermal methods of kinetic data evaluation were published about the same time
(1966/67) by Flynn and Wall (general treatment of the thermogravimetry of polymers),
Sestak (methods of kinetic data evaluations from isothermal and non-isothermal TG
curves) and Murgulescu and Segal (study of the kinetics of heterogeneous reactions
by thermogravimetry).

4.2.2. Differential methods
Differential methods are based on the use of the dependence of the instantane-
ous reaction rates, (dx/dt), on the temperature, 7. This application seems to be simple
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and, in some cases, is able to circumvent difficulties found in many of the so-called
~integral” methods where the direct dependence of the fractional conversion on
temperature is used. However, they suffer from an inherent weakness such as the
magnification of expenimental scatter due to differentiation which thus produces the
necessity of very precise and tedious recording. Many differential methods assume the
existence of a single reaction order. n1. as an empirical constant [see eqn. (4.24)]. The
most widely used method of this kinetic analysis of TG datia is the difference-differen-
tial method first introduced by Freeman and Carroll?3-7*, on the basis of f(x) =
(1 —x)"

Alogd_“=nAlog(1—z)— E A -1-) (4.42)
dT 23R \T

P

which can be rearranged in two different ways'®:

@) [——-—————A log dz"de] - __Ek [A AQ/T) J+ n (4.43)

Alog(I—2) 23R log (1—2x)
2) [A log dz_;dT]z n[A log(l—z):l_ E_ (4.44)
AT, A(1/T) 23R

These equatioyns have been employed to determine the kinetic parameters, £and
n, from TG curves with a reported success not only for the degradation of polymers
but also for simple inorganic decomposition reactions. However, at the same time,
they have been subjected to much criticism ’*. It is obvious that the magnitude of
errors depends on the position of the point . on which the kinetic analysis is being
performed!”-'>. Considering an approximately constant experimental scatter, the
deiermination both at low and high conversions will be quite erroneous. The disad-
vantage of this method, the usual graphical determination of rates, may be improved
vy numerical solutions such as!'”:

[dx‘) _ 1[A0+A_, TEAY,  ATLHAY, ]
exy _ 2 — 4 1
\dr/o O 2 12 60

(4.45)

Where Q is the constant time or temperature interval of scanning and A’} is the differ-
ence between j and j+ 1 points of k£ order. On introducing eqn. (4.45) to eqn. (4.42)
and neglecting terms higher than first order, there is obtained the expression

S T
[log L’Lz—zci_] =n [log Wy — Wy, l] _ E [7;-.-1 7; (4_46)
1

- — 4 -
Wiz —I0,_ w, —w; 23RL T;:, T;

This is suitable for the simple numerical method of thermogravimetric data where ;
and . are the instantaneous (j) and the final (cc) measured weight loss. For a precise
determination, the electronic or polynomial derivatives are required. Flynn and Wall*®
pointed out, however, that the ditference-differential method gives only a procedural
n and E, particularly where an additional competitive or indep»ndent reaction takes
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place, and treatment of each linear-like range independently does little to improve the
results (see section 4.3).

This disadvantage may, of ccurse. be improved by direct use of a less formal
case-model. In the case of nucleation and crystal growth. the general function is given
by eqn. (4.26). i.e., f(x) = {1 —x) (—In(l —x))? and then™3-*32-*=

; dn)i(l - - : 1
[Alog[(dz,_dt),(l 1;]]= __E_[ A(T) J"”” (4AT)
Alog(—in (I —x) 23R Alog(—In(l —2x))

Generally. the f(x)-function is determ.ned by two exponents, n, 1 or p {see eqns.
(4.28) and (4.32)}: for the simultaneous u=termination of three kinctic parameters
(E. n, m. or p). it becomes necessary to resort to a numerical method of calculation.
For example, the equation™

A log ((ia_z = — E (A1/T)y+mA log x+nAlog (1 —=) (4.48)
dr 23R
and/or
da E . \
Alogl— )= — (A1 T)+nAlog(l—x2)+pAlog(—In (1l —=)) (4.49)
dt 23R

forms a set of non-homogeneous linear equations for different values of z and T
scanned at equidistant points.

A radical simplification includes the assumption”’ that the reaction rate, dx/dz,
is influenced more by the change in the temperaturs-dependent constant than by the
change in the function f(x). In such a case the + -action mechanism is not important
and E can be roughly calculated by the equation:

c_lf — _E_ 14 : 1t ~ _L i 4 S
log (dr) J3R (1/T)+[log Zf ()] = 33R (1/T)+const. (4.50)
This is believed to be true when working in the initial part (0.2 <x<0.5) of the
sigmoidally shaped curves of x vs. 7, (or close to the maximum values of d2z/dr3). A
comparison of kinetic data thus calculated for the thermal decomposition of KMnO,
is given** in Fig. 4.8 using eqns. (4.41), (4.43), and (4.50).

For a kinetic analysis which utilizes the detection of the volume of volatilized
reaction products (or products in an inert gas, as for gas chromatography or mass

*The exponent factor m in eqn. (4.48) may also be determined in analogy with the above simple
difference-differential methods. After differcntiating with respect to log « and rearrangement it gives

d (log (dx/de)) x E jd’'n)
+n = — + m
dlog x I1—=x 23R} dloga

for fixed values of n equal to, e.g., 2, 1 and 1/2. Wec notice once more that E and m are procedural
values and it is unnecessary to assume them to be constant in the whole reaction region. But, in fact,
any observed variation of m would have to be quite large to be significant enough. For dctailed
mathematical analysis of formal descriptions used in non-isothermal kinetics see ref. 43.
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Fig. 4.8. Example of the manual evaluation of a TG curve**. (A) for the decomposition of freshly
powdered KMnO, using differential (C) and difference-differential (B) methods (see text). The most
linear plot is obtained assuming phase-boundary reaction as the rate controlling process.
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spectrometry) the differential method was used by Jiintgen and Van Heek33-76:92,
Assuming a model relation of n-th order with regard to the volatile product. the set of
equations given in eqns. (4.34) to (4.37) 1s obtained (sce section $.1.3). The reaction
order is then determined either by a method similar to Kissinger” >, which is based on
peak assymetry, or from the position of the maximum reaction rate, similar to the
method of Horowitz and Metzger’®. Calculation of E and Z is made from the half-
width of the peak and from the corresponding temperature at the maximum rate.
Nomogramatic evaluations were also used by Van Krevelen et al.3!.

Generally, the plots of rates vs. temperatures exhibit a maximum (c-iz,"dT)mu,
except when the reaction order is equal to zero. In such a case, the second derivative
of the kinetic equation must be equal to zero, or

2
(d 1) =0=(d_a> [ E —gexp(— E )n(l—z)’,'n:“] (4.51)
dT?/max dT/eax | RT,.. ¢ RT, ..

Kissinger’ >, and Horowitz and Metzger’® have shown that the term, (1 —2) ,,,,
is a constant for a given value of n. On takin : logs, and rearranging the equation is
obtained,

=)
TI;IX R me

which was used for DTA measurements by Kissinger’> and Reich®3. These equations
were first der‘ved for first order reactions by Murray and White®® and Tsuzuki and
Nagasawa’?. Van Krevelen et al.3! plotted families of curves for various 7, , for
log (T (d%/dT)).... and log (AT /T)... vs. log (E;R) for first order reactions (where AT
is the half-width of the differential curve for easy E-scanning). Turner et al 32 later
refined these relations correlating E/R to 7,,,, and AT for n=1 and 3;2. Kissinger’?
developed a shape index, s, defined as the absolute value of the ratio of the tangents
to the differential curves at the inflection pcints, and related them to the reaction order
by the equation, n=1.265"*. Fuoss et al.®* suggested the determination of three

maximum values, 7..., (dx/d7),., and (1 —x),,, from the infiection poirt of the
integral curve for the consequent evaluation of the activation energy by

(d_z) _ E( =D (4.53)
dT /max nRTZ..

(4.52)

However, (I —x),,, is relatively independent of the heating rate, ¢. and may be
expressed by means of n?3:78 because of In (1 —2),,,, = (1/(1 —m) In (;1). Introducing it
back to eqn. (4.53) :

E= (dgi) RTZ n™o=D (4.54)

Flynn and Wali'® pointed out that if (I — x),_,, is independent of 2, then 7, (d%/d 7).,
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must also be independent and eqn. (4.32) inay be transformed to

Alogé(—di) __EL!
dT/max R \T_.

). (4.55)

Similarly, Farmer®® developed an equation for T;,,. the temperature at which the
conversion reaches 0.5, using

1 1—
ln(l—-az),m,=1 [ nrx-i-i:l,

—n n

where r, 1s a function of E/RT.

A mathematically simple diiferential method for determining kinetic para-
meters is @ modified Arrhenius plot given by eqn. (4.41). Magnusson~ >, Kofstand®®,
Barrer and Bratt®”, Newkirk®®, Ingraham and Marrier®?, and Carroll and Manche®®.
employed this equation on the basis of the reaction order. n. Others*?*-?7-°% have
suggested the use of eqn. (4.41} by iesting different model relations of f(«) to remove
the order of reaction. Andersen®? solved three simultaneous equations for eqn. (4.41)
at threc different ¢ values computing the parameters, Z, n and E at a series of
constant (I —x) values. Friedman®! applied the general form of eqn. (4.41} to the
terms. (dz’d7) and 7°°. A plot of log (d=z'dT) vs. (1°'T) gave a slope of E:2.3R
and an intercept of log [Z f(x)]. This mcihod has the most general use in computing.
Doyle?? substituted Z ¢ =exp (E;RT) f(z)/(d%/dT) into eqn. ($.41) and together
with a one term apprcximation of the p(x) function. obtained

E— TfR(dz/dT),-.
[f(@); 2(®);]

This method is suitabie to obtain a rough value of E from a single point j. The error

in E depends on the value of E;/RT and lies within 4 to 16 relative percent (for

E/RT = 10 and 30, respectivelv).
Flvnn and Wall?® suggested on the basis of Chatterjee®?. the working equation

(4.56)

idp Az :
Aln(dw/dy _E _AfaZf(w) (4.57)
AT R  Aln(i/T)

[const W] [const d#¥/dr]

which is applicable to two or more runs at different initial sample weights during TG
measurements. They recommended®* also the calculation of an approximate E from
initial rates even where f(x) 1s unknown because all well-behaved reactions approach
zero order at x — 0. This is only possible for non-isothermal techniques because the
beginning of the experiment is precisely characterized. In isothermal studies, an
inevitable time-lag in reading the experimental temperature is always present. In
general, (dx’'d7) vs. = plots remain linear to higher conversions (= 0.03) than do
log (d2/dT) vs. 1/T (=2 0.01). The best procedure appears to be to plot dz/d(1/7)
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[= T* (d«/dT)] vs. « having the slope, Eit’=+ 2T, where E'R » 2T. The term T is the
average temperature over which the slope is being determined. In practice

_ RT}(dz/dT),

E (at x — 0). {4.58)

The curves, dx,'dT vs. xz, are shown in Fig. 4.9.
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Fig. 4.9. Plot of rate of a process vs. fractional conversion for different reaction orders®®.

4.2.3. Integral methods

The integral methods are simpler than the differential methods as they do not
invoive the determination of rates even *~ 2ugh they are complicated by the integration
of the rate constant. Some difficulty, nowever, may arise from the cumulative character
of the values'? evaluated by an integral method. particulariy in the case of the
existence of 2 temperature dependent induction period: differential methods, which
give instantaneous values for these parameters. are not so afiected.

The integral methods may further be divided into two groups: (1) approximate,
which employ for the rate constant iniegration an approximation related usually to a
particular experimentally determined value such as the inflection point: and (2) based
on the p(x) function (see section 4.1.2) both expressed by a limited number of terms in
an expansion series or tabulated.

In the first serious treatment of thermogravimetric data, Van Krevelen et al.®!
used the approximation, 7= 7; + 8. where d 1s the characteristic temperature deviation
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of the instantaneous reaction temperature, 7, from the temperature of the inflection
point, 7T, (equal to 7,,, scanned in the corresponding derivative curves; see section
4.2.2). These authors approximated the exponential integral by substituting

’ E .

exp ( B —> = [exp {~T/]¥*™ = [0.368 T/T;]~*" (4.59)

. RT
which is valid in the region, 0.9 7; < 7< 1.1 T;. Through an approximation of the rate
constant and intzgration of the kinetic equation, they obtained

Sz da Z 0.368 E/RT; T(EiRTI+ 1)
g(x) = = —[ ] — (4.60)
Jof(@) oL T, E/RT;+1
which may be transferred inic logarithmic form
logg(x) = log Ce, —[(A4/T;)+1}log T .61

The constant. £, , is given in eqn. (4.60). Eqn. (4.61) can be tested for linearity by
plotting log T vs. '3 g(2) for various model relations of g(%).

Horowitz and Metzger’® simplified the expcnential integral with an approxima-
tion similar to but simpler than that of Van Krevelen et al.3! (see eqn. (4.59)). They
defined a characteristic temperature deviation, o, through the equation

1 1 1,6
= = — 7T
T+0 T(l+6/T) T T¢

After substituting and integration, the expresston is obtained

‘2 dx  ZRT? E 5)
= = 3 — {1 --—=1I. 4.63
e = 1t eE OF [ m;( T] (63

Assuming the validity of order, n, the multiplication term, E/RT2, can be replaced
through the second derivative [given by eqn. (4.51)] yielding in the logarithmic form

(for n21): log[1—(1—2)' ™"} = log (1—n)—E[(2.3RT?) % & (4.642)
(forn=1): log[—log(l—2)] = —log2.3—E/(2.3RT{") x (4.64b)

(4.62)

1

where the relationship between values of order, n, and residual fraction, (1 —z), i1s
given in Table 4.1. Gvulai and Greenhow?®® recommended the use of an improved
form (1 —2); = 1.062n*/} 7™,

Thiz kinetic method of evaluation was also used by Logvinenko et al.>® in
chromatog-aphy. Trey also derived an equation for a rough calculation of E from
two points, T and x (= partial to tota! peak area), obtained by plotting a line
parallel to time axis at 0.632 umes the height of the peak, or

— nRTl Tz lOg [(l —'a‘),[(l --12)]
Tz—TI
This expression, unfortunateiy, has little practical use. These authors further

E (4.65)
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TABLE 4.1

DATA FOR INFLECTION POINTS OF TG CURVES FOR VARIOUS
REACTION ORDERS, n

n (1_1)1__;'_‘!!(1--) n (l—l)l :nli(x—n)
0 0 2 0.5

1/3 0.192 3 0.576

172 0.250 4 0.53

23 0.298 s 0.669

1 0.368 (= 1/e) 19 0.919

3n2 0.444 @ 1

investigated the applicability!?°-'%! of the Horowitz and Metzger'® method for the
use of more general Kinetic equatior [Johanson—-Mehl-Avrami—Yerofeyef-Koglo-
morov eqn. (4.25)] and found that a plot of log[—log (1 — )} vs. (T—T;)(TT;) gavea
straight line with a slope of £/2.3 R holding a fixed order of n = 1. They noticed that the
caiculation with the fixed exponent, n, decreasea the value of the activation energy,
if n>1, and increased this value, if n< 1. Dharwadkar and Karkhanavala'®? pointed
out the change of 7, with sample size and the rate of heating. Hence, they assumed T;
not to be representative enough for the actual sample temperature. Due to self-cooling
the temperature deviation from the true value i1s 2 maximum just when the reaction
rate reaches its maximum. Therefore, they invented instead the temperature of the in-
flection point, 7;. the temperature of the inception of the process. T;, (where T =
T;,+ ¢), and derived the modified form of eqn. (4.64), or
E 100

log[—log(1—a)] = 23RTE (T,—T.) @+ Css (3.66)
T¢:. is the temperature of the process termination. This equation is reported to give a
satisfactorily correct value for E. This is in contrast to the original equation (4.64),
particularly because both values, x and @ (100¢;{T¢;, — T;.)), 2re used in a normalized
form.

Using a two-term approximation for the p(x) function, Flynn and Wall'? also
suggested an improved version of eqn. (4.64), or

1.C52E _
—_— 0
2.3RTZ

where T,, is anyv reference temperature. The numerical constant. 1.052, may be
improved by means of the tabulated p(x) function.

Reich!?3 pointed out that at a very smalil and nearly constant A7, the integration
of the rate constant may be roughly carried out by taking the exponent as a constant
and replacing dr by A7/¢, which then yields

log [—log (1—2)] = C- (4.67)

logg(x) = — + Iogg AT. (4.68)

2.3RT
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(It is interesting to compare eqn. (4.68) with eqn. (4.74).)
On considering constant weight loss points for two different heating rates*

log ($./¢,) (T:/Tz)l
lftTE —_ l.”Tz

E

IR

4.6 (4.69)

Flynn and Wall®* derived a simpler equation in comparison to eqn. (4.69) using
Doyle’s approximation fer the p(x) function of eqn. (4.21)

Alog ¢
A(1;T)

E=—435 (for (1 —x) = const.) (4.70)

(see also Fig. 4.18).

Activation energies may be quite accurately ard simply obtained by successive
approximations from tables of log p(x) and A log p(x) for various x = EfRT. Ozawa®?
also derived eqn. (4.70) but employed it without further refinement to calculate £ at
several z values and to construct theoretical masiers-curve similar to the work of
Doyle®® and Satava®!. A more accurate experimental master curve is obtained by
superimposing the curves of log ¢ vs. 1/T at several heating rates by displacement
along the abcissa (see also Fig. 4.16). Flynn and Wall®* considered this method to be
one of the best and most generally applicable®;

The expression is:

X ZE E
log g(%) = log— — log ¢ —2.315—-0.457 — (4.71)
) R ¢ RT

From the slopes of plots of log « vs. 1/ 7T at constant «, log g(x) vs. I/T at con-
stant ¢. and for log g(x) vs. log ¢ at constant 7, there is obtained

nloc $ 457 E _ A log g(a)

—= =~ —0. (4.723)
AU/T) R A(1/T)
[x = const.] [ = const.]
and
—‘}—bﬁ‘—‘f’—’ =1 (= horizontal plot) (4.72b)
Alog 9
[T = const.]

The right-hand side of eqn. (4.72) mayv also be applied to a single thermogravimetric
curve and has some advantages over the methods of Farmer®® and Ceats and Red-
fern'°® (eqn. 4.73). The use of the MacCallum and Tanner approximation*® for

*Doylet?® corrected another similar equation invented by Reich and Levi'?% to the form,
E=2310og(A2/!4,)/1:T; —1.T3) R, where A.:/A; is the ratio of two corresponding initial areas at T,
and 7-. This equation shows a lack of seasitivity.
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log p(x) equal to 0.4828 E0*331 1 (4491 217E) T gives a similar result®®, ie..
[A log $/A(1[T)], = — (350 + 220 E).

Coats and Redfern!?3-1%? ysed the approximation for the p(x) function as
exp (—x)[(1/x) —(2/x?)} and obtained

} \ i
log (g(f ) = log ZR [l - 'RT] __t (4.73)
T &E E 2.3RT

where the first term on the right-hand side of egn. (4.73) is a slowly changing function
of the temperature and may be considered as being constant in a narrow temperature
interval. Hence. a plot of log (2(x)/7T?) vs. (1/T) appears to give a straight line when
the model relation, g(x), is known or is being tested for a linearity. This equation may
be applied for low level conversion data as well'°?, assuming all reactions behave as
zero order (x—0). Hence, the plot of log (2/77) vs. (1/T) should give a straight line
for x not exceeding 0.1.

In the recent literature, atiention has focused back to eqn. (1.23), g(x) = ZE R¢
x p(x) (assuming the p(x,)-term negligible). first suggested by Doyle*” as a trial-and-
error curve-fittine method for the determination of activation energy. Zsako>”
attempted to simplify this method by using this equation in the logarithmic form

log% = log (g(«)) —log (p(x)) = const. (4.74)
@

where the constant, log (Z(E’R) ¢), depends only upon the nature of the material
studied and the heating rate but not upon the temperature. This constancy suggests
a quantitative method of testing different model relations. g(x). by means of the trial-
and-error method to determine the apparent activation energy consistent with a

~ \
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- ~
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73 5Ty 57E

Fig. 4.10. Plot of log p(x) vs. absolute temperature=©.
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chosen function of g(x). Satava and Skvara*° went even further to simplify the
tedious procedure®’ and suggested a graphical comparison of log (g(x)) and log(p(x))
by means of nomograms. The log (g(«))-values for various rate processes are plotted
vs. the corresponding 7 values on transparert paper on the same scale as the standard
plot of —log (p(x)) vs. T. Tke plot of log g(x) is placed on top of the log (p(x)) dia-
gram so that the temperature scales coincide and it is then shifted along the coordinate
untif one of the log g(x) curves fits one of the log (p(x)) curves. From this log (p(x))
function, the corresponding activation energy, £, can then be obtained (see Fig. 4.10).

Later Zsako’®, improved Doyle’s isothermal method?* of deriving activation
energies from theoretical curves by an iterative procedure, suggested that log (p(x))
may, to the first approximation, be a linear function of reciprocal absolute tempera-
ture. MacCallum and Tanner*® and Satava*® assumed furthe: that if the difference
between functions of log (2(x)) and log (p(x)) does not depend upon the temperature,
and if log (p(x)) is a linear function of 1/T, then log (g(%)) must also be a linear func-
tion of 1/7T (see Fig. 4.11). This property of log (g(x)) can be used for the determina-

log g(oc)vs T

l; - -E __1___
S10P6 4576 xe*p(x)

Fig. 4.11. Diagramatic representation®® of eqn. (4.74).

tion of the probable reaction mechanism with regard to both the reaction order
concept*®, or more accurately, the particular model relation for a heterogeneous
process*°. It is evident that a plot of log (g(2)) vs. (1/7) calculated from the experi-
mentally obtained data, x and 7, becomes linear only for such a g(x) function which
corresponds to the most probable rate-controlling process (see Fig. 4.12). Thisis true
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Fig. 4.12. Procedure for the evaluation of TG curves*®. Lower curve complies with kinetic equation,
g(@) = —log(l1—2), E=30kcalmole~!, Z=10'35"'mol~!. é=1"C/min. Upper curves are plots
of log g(x) vs. 1/Tx calculated from TG curve for various kinetic equations (sec Table 4.1). The
straight line corresponding to the kinetic equation of random nucleation coincides with the plot of
-p log p(x) vs. 1/T, for p=1 slope with E= 30 kcal.

for the temperature interval of process duration not exceeding 100°C, as shown by
Sestak!®. From the slope, tg 8, of the straight line the ~orresponding activation
energy can be calculated as follows:

(1) As a root of the derived quadratic equation employing the first two terms
of the expansion series*®

E = %W(—tg B+ (tg?B+8tg Bx THY? 4.75)

where T is the mean temperature of the process.

(2) Using a dernivative with respect to the reciprocal temperature in the approxi-
mate equations, log p(x) = —2.315 — (0.4567E;RT), andjor = —482.8E0®-4361_
— (449 + 217 E)/ T, which gives!® E = —[440+tg B/2.3)/217.

(3) By an iteration procedure®’ where E, to a first approximation, is intro-



476

duced by the equation, E = (4.567 tg f—2RT). and then substituted into x = E;RT
where T is the mean temperature. This is used as input data for the equation'3-%%-°>

21 t F a1
E = Re“x?p(x)tg f = R tg(l = +3—;— —ﬁ) (4.76)

x x* x"

where one iteration loop is usually sufficient to yield £ with a high enough accuracy.

The value of the pre-exponential factor is then obtained®* by introducing the
values of E, ¢. log (2(2)). and log (p(x)) with appropriate valucs of ¢ and 7, into the
modified eqn (4.74).

Ro

log Z = log-g + log g(x)—log p(x) *.77)
A similar procedure of kinetic rate determination was suggested by others?®7-11+-115.
particularly, the use of dilatometric measurements in sintering investigations should
be noted'*.

It is clear that owing to the small differences between the values of the individual
case-model functions. the determination of the rate-controlling process is not com-
pletely unambiguous**-*9-¢3-1312 This  of course, applies to all methods which
employ a test of lineanty, e.g., eqns. (4.61), (4.64), (4.73)*. Besides the difficulty due to
small deviations from the linearity (see Fig. 4.12). there arises another problem
connected with the direct determination of the value of the exponent-factor, r, for the
function, (—In(I —2)"" [eqn. (4.23)]. Double logarithmization gives the least sensi-
tive furction but it cannot provide any further information about the exponent, r,
from the plots of (1/r) log (—In (1 —x)) vs. 1/T because the slope contains the value of
a multiplying constzac®? as well. It applies also to the case of the exponent 2, if com-
paring!'? Jander’s equation for diffusion. [1 — (I —«)!/3}?, with the phase-boundary
equation, [1 — (i —x)*'/ 3}, both of which arz valid under spherical symmetry. An addi-
tional criterion is needed for a correct decision about the rate-determining process.
It may be, for example. the value of the pre-exponential factor which, for most simple
decompositions. should not differ from 10'? by more than two orders of magni-
tude.

Another source of information may be the comparison of results obtained
through the differential and integral methods, as noted by Sestak®>. Assuming a
simple form of the rate constant, k, in the original form of the Johanson-Mehl-
Avrami-Yerofeyev—-Koglomorov method. eqn. (4.25), then the algebraic manipula-
tion necessary to obtain the functions, g(x) and f(x), changes its value to k' =rk'"
(or E’ = E;r). This last value takes part in the p(x)-function, i.e., p(x) = p(E/r RT).
The difference-differential method** (eqn. (4.47)] gives the procedural slope of
E;4.57r while Satava’s integral method*®, on plotting log (—In (1 —)) vs. 1/7. yields
the procedural slope of rE;4.57r = E/4.57. Therefore, the ratio of these two slopes may
provide an estimate of the exponent factor, r. The same meaning was obtained by
Nikolayev et al.?°! that the only comparabl:: values of the activation energies are those

*See Nore added in sroof on p. 500.
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Fig. 4.13. Integral methods for manual TG curve evaluation**. Compare with Fig. 4.8 and the
following table, obtained by the least squares computer evaluation using Skvara’s program!®? for
the required accuracy of 10 percent in the calculatcd linearity region.

Case-model Interval of linearity E Z Standard
(in a) (in Kcal) deciation
[1——x)*3] % 0.1-0.93) 40.3 9.0x10"3 0.028
[1—(—=x)'3])2 84% (0.1-0.93) 83.5 9.3 x 1031 0.028
1—3x—(1—x)3"3 % (0.1-0.93) 77.2 1.4x10%° 0.051
[1—1—=xt3 77% (0.1-0.86) 39.0 2.1x10%3 0.06
d—x)In(1—x)+a 63% (0.13-0.76) 74.2 2.7x1038 0.058
[—In(—x)]"2 529~ (0.06-0.57) 22.8 3.5x 10° 0.023
[—In(I—a)] 52% (0.06-0.57) 47.5 2.7x10*%7 0.023
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obtained with an identical value of exponent factors or calculated to the same value*,
conveniently equal to one.

The actual use of integral methods for kinetic data calculations is shown in
Fig. 4.13 for the thermal decomposition** of KMnO* employving the methods of
Satava*® (eqn. 4.74) and Coats and Redfern'®® (eqn. 4.73).

4.3. Special cases of eraluation

4.3.1. Rerersible reactions and proximity to equilibrium
In reality, cvery process car. be assumed as being reversible and the overall
reaction rate may thcn be expressed as the difference of both of the opposite rates

¥ = Feor— Trev = rfor[l —exp ('—\G;R T)] (4'78)

where r¢ Is the rate of the forward reaction and r,_, is rate of the reverse reaction. This
was actuaily derived by Bradley!!® for transformations passing through the vapor
phase and satisfactorily applied to describe various heterogeneous processes. The
term, AG, is the driving force which, in the case of chemical reactions, may be
expressed as AG = R7 In (X/K), where K is the equilibrium constant and X is the
product of activities of all components. The change of the Gibbs free energv, AG,
for a reaction reaches large negative values for the stages distant from equilibrium
(AG — — oc and exp (AG/RT) —0), 1.e.. the total reaction rate is independent of the
driving force, r = r(,,. In the vicinity of equilibrium (AG — 0), the expressior, (I —exp
(AG/RT)), may be expanded according to the Taylor series so that r =r. (AG/RT)
when neglecting the terms of higher orders. Considering the opposite processes as
obeying the same rate controlling process (diffusion for reactions in a condensed
system) egn. (4.78) may be rewritten as

da/dt = Kyop £(e) — Kyev £(2) = Kpor £(%) [1 —exp (AG/RT)] (4.78a)
Such a corrected kinetic equation has a logical justification in the activation
energy diagram (see chapter 2, Fig. 2.1) and can also be derived by means of thermo-
dynamics of irreversible processes. Under non-isothermal conditions the integration
of eqn. (4.78) yields
Z(AG—E)
R¢
where x, x, ¥ and y. are E/RT, E/RT_,. AG/RT and AG/RT,_,, respectively.
Because AG = AH— TAS and assuming that AH and AS are temperature independent,

ga) = % () —p(x)] — DG =)DV — %] 4.79)

*Upon using Van "t Hoff relation these authors??? also derived following equation for the correlation
of activation energics

nlici-=
El-"‘!’:—“u_T)E‘—'éE:AH
e n(1—n)
where coefficient £ has value 0.708; 0.667; 0.583; 0.5 and 0.453 forn=1/3; 1/2; 1; 2 and 3 respec-
tively. The termn AA is the heat of reaction a1d i designates the inflection point.
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Fig. 4.14. Effect of the heating rate, ¢, on the dehydration of 2-CaSQ,- 1H,O0 at py.o = 0.025 atm.53.
Extrapolated linear parts corresponds to E = 30 kcal mole™ 1, for g(z) = —In (1 —2).
then AS = AH/T,, where T, is the temperature of equilibrium. After rearrangement

ii [P(x)—p(x.)] (4.80)

g(@) = % [p()—p(x.)] —exp (AH/T..)

where E' = E—AH, x’ = E'[{RT and x.,, = E'[RT,,. If E’ is small the second term on
the right-hand side of eqn. (4.80) can be neglected and the term, (log g(xz)—log [p(x)—
—p(x.y)l. is a constant. However, in comparison with the previously given evaluation
method (see Fig. 4.11) neither log [p(x)—p(x.)] nor g(a) are linear functions of 1/7.
This can be demonstrated®® in the case of CaSO,-4H,0 dehydration which proceeds
ciose to the equilitrium temperature. It is evident that the g(z) function then requires
the same curvature as log [p(x)—p(x.)] and the difference between both curves
depends only on the value of the heating rate applied, ¢». The direct determination of
g(2), E and Z would thus be almost impossible but, with a sufficiently high heating
rate, the curve of log (g(x)) vs. 1/T approaches a straight line suitable for a simple
treatment (see eqn. 4.74), as shown by Satava and Sestak®®. Thus, it is evident that
the proper choice of a sufficiently high heating rate is essential for kinetic data calcula-
tions because at too low a heating rate the process is completed in the vicinity of the
equilibrium temperature, 7., (in the curved part of the plot). Kinetic data calculated
under such conditions are erroneous and the apparent E is larger than the true E.

4.3.2. Simple parallel and consecutive processes

If multiple reactions take place in a process, the experimentally measured curve
represents the sum of the individual contributions, as was shown by Flynn and Wall'?
and Jiintgen and Van Heek?®®. For a proper analysis it is necessary to determine the
partial steps, N, and to find a method for the direct study of (N —1) processes and to
compare the partial curves with the sum of the curves. It is evident that the compic<
value of parameters characterizing the summation curve cannot be attached to a
particular physical meaning. An illustrative case was given by Jiintgen and Van Heek >’
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Fig. 4.15. Overall efiluent gas curve calculated for given composite case. Individual paralle} reactions
(dashed lines) are for first order with E from 48 to 62 kcal/mole. Z=1x%x 103 min~*!, £ ¥y =9.6 cm?
g~ '. Resulting pecak corresponds to E=20kcal Z=[%x10*min~%, ¥,=10cm?*g~* and
¢ =1°C/min (according to Juntgen and Van Heek %),

and is reproduced in Fig. 4.15. The summation curve is composed of eight partial
processes the activation energies of which lay within the region of E=48—62 kcal
mole™ ! (Z =10'5). An analysis of the summation curve leads to an apparent activa-
tion energy valiie which is equal to 20 kcal mole™ ! (Z = 10%). Flynn and Wall'?
reported that two parallel processes could be separated by a suitable choice of the
heating rate so that the kinetic parameiers of each process could be calculated from
the corresponding part of the summation curve. A necessary condition is that their
activation energies be different'?-55. Flynn and Wall'® also showed an example of
two parallel independent reactions where a fraction of reactant, A,, volatilizes by
first order kinetics (the Arrhenius parameters. Z; and E,). Similarly the reactant
remainder. (1 —A4,), possesses the parameters, Z, and E,. After the integration pro-
cedure, the equation is

(-2 = A, [exp (— % p(xx))] +(1—A4y) [exp (- % p(xz))] 431)

where p(xy) 1s neglected.

Another case i+ exhibited!® by two consecutive reactions where the initial
reactant may be volatilized by two alternative paths of competitive character, each
having a rate proportional (accordingly to eqn. (4.81)) to the first power of remaining
volatilizeble polymer (Z,, E, and Z,, E,), or

(1-= = exp [— %-‘— p(xy) — z;? p(xz)]- (4.82)
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1 L } 4
S5E0 €00 650
Fig. 4.16. Effect of heating rate on residual fraction vs. temperature for composite cases, where full
line corresponds to independent first-order reactions (E = 30 kcal mole™ !, Z = 4.458 x 106 sec™ '),
dashed line competitive first-order reactions (E = 60 kcal mole~*!, Z =1 x [0** sec™ ') (according to
Flynn and Wali!?®).
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Fig. 4.17. Effect of heating rate on the thermogravimetric rate vs. tempcrature for composite cases, see
Fig. 4.16. Case (a), competitive; case (b). independent reactions®®.

These two cases may be separated by applying various heating rates, as is shown
in Fig. 4.16 (the effect of heating rate on in= residual fraction) and Fig. 4.17 (the effect
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of heating rate on the overall reaction rate). Independent reactions give at higher
heating rates the appearance of one single curve as these two reactions broadly overlap
each other. At decreasing heating rate, the curve tends to fiatten as the two reactions
begin to separate until two peaks are obtained in the differential curve. On the other
hand, for two competitive reactions, the low activation energy reaction takes over
almost completely at low temperatures and heating rates. At the higher heating rate,
this reaction takes place only during the first third of the curve while the high-energy
reaction considerably modifies the latter porticn of it. The high-energy reaction
causes a temporary increase (dz/d 7)., with increasing ¢ while in a simple reaction
the maximum rate decreases upon increasing ¢ and 7., . For equal activation energies
these two consecutive first order reactions appear as a simple first order reaction with
no regard to the difference in pre-exponential factors. For evaluation of this effect,
the Flynn and Wall'® method, eqn. (4.70) is perhaps the best method to distinguish
them, as is demonstrated in Fig. 4.18. In general, employing very low heating rates
will best isolate competing reactions while fast heating rates are best for independent
reactions.

4.3.3. Non-uniform and cyclic heatings
Uader actual experimental conditions it is almost impossible to attain a per-

3, 0001

10
ooo1

16

&0

1,
/T-10%(*

Fig. 4.18. Calculation of kinetic data according to Flynn and Wall'® (eqn. 4.70). The logarithm of
heating rate is plotted vs. absolute temperature for curves in Fig. 4.17. Each line constructed for
multiple values of a.
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fectly linear increase of temperature with time. There are two probable sources of
error, namely, the heat cvolved or absorbed in the process (self-cooling or self-heating
of sample>!-32-6°) and the failure of the temperature control equipment to respond
linearly to the temperature (as for example, thermoccouple voltage not strictly pro-
portional to tke temperature). Such departures from linearity do not necessarily lead
to fundamental errors of observation but a correction of the measurement that
corresponds to a linear temperature vs time relationship is essential. The correction is
ideally made by introduction cf the proper monotoric form of the function, 7= T(z).
Alternatively, it may be more practical to obtain the departure from the linearity in
the 7 vs. 7 curve in the forin of either an experimental set of points or polynomial
fitting with a computer. The correction of the measured thermal property is then
straight forward. Szekely! ! 7-!!8 ¢t al. and VachuZka and Vobofil' '? emploved second
derivates in the ordinary differential equation to calculate the instanianeous values of
kinetic parameters from the instantaneous value of the heating rate, ¢&;,,=
(dY-/,dt)mc:snrcd‘ Hencev

[d'a T2 |_f® [Tl(d;z[dz)] L E (4.83)
d[z dx f(iI) éinst R

- ¢inst
dt

which can be treated as a linear equation by plotting the contents of the square
brackets against each other; the slope i1s f'(2)/f(x) (in the case of order, equal to n)
and the intercept, E/R.

Flynn’® claimed that the kinetic parameters are best determined under iso-
conversional conditions if the temperature was changed rapidly from 7; to 7;.,, as
can be seen in Fig. 4.19. The rates mayv be extrapolated to the same degree of con-
version of different temperatures according to

E In(dz/d1);/ln (dzjd1);.

== : . {x = const.]. (4.84)

rate or.

time
Fig. 4.19. Method by Flynn7°.



If the temperature is varied in a slow harmonic cycle, T= Ty+ 7 sin wr (as
shown in Fig. 4.19), the rates at the temperatures, 7; =75+ 7, and 7;,., = To—
may be obtained at the constant conversion from the upper and lower parts of the
curve. These methods have the advantage that there is no sample variation and that
they give instantaneous values of the parameters. Practical considerations require 7
to be small, but other sets of temperature may be tested at a number of conversions
in this manner. The constancy of the rate constant, k; = Z exp (— E/RT;) may also
be tested at various constant conversions by several runs at different heating rates. A

similar method was used by Reich et al.193-105.120

4.3.4. Heat transfer as the rate-determining step

A quite different situation arises when the experimental arrangement is so
designed that the heat transfer between the source of hea and the reacting interface
becomes the rate-controlling process. Assuming steady—sta-e conditions, then

da 1 dg_ BS.(T-Ta)
dr  V,AH dt V,AH

~here dx/dr is the rate of a process related to the reaction volume, V,; dg/dr is the
rate of heat supply, z is the overall heat transfer coefficient, S, is the reacting surface,
AH is the heat of reaction, 7 is the temperature of sample surroundings (equal to that
on the sample outer surface) which increases linearly with time, 7, and Ty is the tem-
perature of reaction under whick the reaction is assumed to proceed on the sample
reacting surface S, . For spherical symmetry of the sample bulk, S, may be expressed

Sa = 4n(ro—y)* = 4nri(1—o)*? (4.86)

where 7, is the initial radius of the sample and y is the thickness of the product layer.
Combining eans. {4 25) and (4.86)

\.,v.uu;.‘.n- S LYiis. \(F-US) as \r.eovuy

dx/dt = 37(T—Ty) (1 —2)%/3/AHr,. (4.87)

After the integration, using f = (T— TR)/d,

I—(l—) = ——

T
Hr.
A3rg

N

o

(1S

>

by |
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Such cases were considered hy Dmpe:r3-121 as non-activated processes™. In general,
eqn. (4.88) holds for voluminous samples*®

more details see the work of Narsimham?!22 who assumed interface behavior and

steady-state heat and mass flow conditions. The resultin uation agreed with
experimental data reported by Satterfield and Feakes!?2?

CaCO,. Similarly, the detailed work of Hills!2* treated this decomposmon fr om the
enmneﬂnnv noint of view assuming the rate-cor 1trolling steps to be both the transfer
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of heat to the reaction zone and the transport of carbon dioxide away from it.
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The opposite case can be met under the assumption of adiabatic conditions for
an evothermic reaction, or

dx _ C,(dT/d)

(4.89)
dr Vo AH

where C; is the average heat capacity. Such conditions are suitable for investigations
of the thermal stability of compounds in continuous. stirred systems'?>. In practice,
ihe reaction rate term is replaced by the rate equation Z exp (—E/RT) (1 —x)". If
ihe fractional conversion is eliminated, then

dT —E
— = Coo(T,—T)exp|—= - (4.90)
dt RT/

This equation is usually employed in a logarithmic form. The term, C,, is a constant
given by the limiting conditions, T, and T,,, the initial and the maximum adiabatic
temperatures, respectively. The generz' case of a non-adiabatic system exchanging

heat with the surroundings is given by the combination of eqns. (4.85) and
(4_89)125

de €, dT S.(T—-Tp)

(4.91)
dt  V,AH dt V,AH

which, however, is ditficult to solve analytically'2>-'2®, For a detailed integral solu-
tion, see Dammers et al.?2>.

4.3.5. Searching for an adequate kinetic description

The major purpose of the above methods of kinetic data evaluation is to reach
as close a description of the path of the process as possible under the given experi-
mental conditions. Besides the ordinary splitting of case-models due to a simplifying
homogeneous-like approach!'®-1!1-:13 3]] heterogeneous processes can always be
broken down into three basic steps!-*1-*¢-*°-131. (1) transport of matter; (2) nuclea-
tion and nuclei growth and (3) phase-boundary reactions. The not yet considered
adsorption process can also play a significant role as discussed for non-isothermal
conditions in the review by Cvetanovic and Amenoniva'?® and others'2°. Generally,
there are no absolute methods of selecting a proper case-model but tnere exist
preliminary linearity tests which employ single predetermircd icothermal runs.
Literally, it is a plot of the functions,

log [—In (1 —2)] vs. (time) and/or
log {dz/dr] vs. log (1 — %)

to determine the value of the exponent-factors for nucleation and nuclei growth models
and/or phase-boundary models, respectively.

Accordingly, a more general test for isothermal data can be adopted according
to the method of Hancock and Sharp'3® who employved a formal function in the form
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of —log (In (1 —x)) =m In z+In k. By plotting
—log (In (1 —2)) vs. log (time)

a straight line is obtained having the slope, m, the value of which falls within 0.57 to
0.62 for simple diffusion, 1.0 to 1.15 for nuclei growth and within 1.25 to 3.00 for
phase-boundary reactions. A possible scheme of steps for non-isothermal kinetic
analyses is outlined in Table 4.2.

4.4. Kinetic parameters by differential thermal measurements

The usefulness of thermal measurements as a TA method of monitoring and
defining thermal effects associated with chemical changes and structural transforma-
tions has been shown in section 2.2. In principie. DTA curves can be used for both
enthalpy change determinations (proportional to thc DTA peak area) and investiga-
tion of reaction kinetics (influencing the shape and the position of DTA peak in the
temperature scale, see section 4.1.3). The success of kinetic data evaluations, however,
has been Iimited by the difficulties in formalizing the factors responsible for the curve.
The shape of the DTA peak has been shown to be a function not only of the reaction
kinetics®! but also of the geometry and thermal diffusivity within furnace, sample
and thermocouple assembly'32-147, The calibration procedure widely used in the
determination of heats of reaction is of little actual use in the study of reaction
kinetics. Because of the fact that accurate calorimetric measurements are difficult to
obtain by means of DTA, reliable kinetic results should not be expected either!33.
The design of an energy proportioning DSC technique substantially corrected diffi-
culties in the conventional DTA system. Despite all of these factors, a large number
of articles have been published dealing with the kinetic appraisal of DTA peaks.

The most simple and widely used approach is that derived by Borchardt and
Daniels'>#:13%_ They assumed experimental conditions under which no temperature
gradient occurs in either the sample or standard and that the thermal diffusivities of
sample and reference were identical and independent of temperature and reacticn
progress. In such a case, where heat loss is being neglected, the heat balance for the
rate of reaction gives :

dm _ o (c,, dar , tAT) _dx 1 (4.92)
dtr A dt: :

where m and mi, are the numbers of moles of the reactant at time r=17 and 7r =0,
respectively; A is the total area under the peak, A is the reaction heat and dAH = dni,
C, is the heat capacity of the sample, AT is the temperature difference recorded and ©
is the heat transfer coefficient. After integration

o= _ 1GAT | 4, (4.93)

mg A =z
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where A4, is the peak area to time r. The values of A can be determined from the DTA
peak by means of graphical. numerical. disc and/or analog integration methods. The
value of C,/r may be established from the cooling curve of the system as shown by
Baumgartner and Duhaut? 3¢ who also determined the kinetic parameters, E, Z_ and
order, n, by means of an integral method.

For the processes which actually follow the reaction order kinetics, Freeman
and Carroli’? modified eqn. (4.93) into the difference-differential form

Al (c a7 AT)
og{C,—— +1 ”
" dr - _E ALT) Fn.  (494)
Alog [¢(A—A)—C,AT] 23R log [t(A—A)—C,AT]

By negleciing comparatively small values in eqn. (4.94) a simplified form can be
established!32-137

Alog AT A/
—= = —E +n
Alog(A—A) 23RAlog(A—A4)

138,139

(4.95)

Another method was introduced by Wendlandt using the equation

log AT __E A(—l—) (4.96)
A—4, 23R T

A number of methods have been proposed for extracting kinetic parameters

from multiple DTA runs. Especiallv prominent is the Kissinger method?*-'*° for

determining E, which was independently developed by Murray and White®® and

Dane3 and Ponec'*!, on the basis of the following equation (see also section 4.2.2)

log (¢/T2.) = —E[23R(1/T,.) (4.97)

where 7., 1s the temperature at the maximum rate developed during the process.
Reed et al.'*? considered the DTA thermal resistance problems and concluded that
eqn. (4.97) would be inaccurate if T, were applied as the temperature at the maximum
of the DTA peak, particularly for voluminous samples (preferably a micro-DTA
system should be used). Rogers and Smith'*? pointed out that the assumed constant
value of (1 —x)_,,, . which develops at the maximum rate (see section 4.2.2), may vary
with T,  at different heating rates applied for morz complex processes. Reich!'**

developed a different equation on the busis of the Borchardt simplification!3> that
C,(dAT/dr) <AT, or

¢AT) (A — A,) E 1
logl —— ) = nCgyq log — — 498
g( A P®UEL 4 23RT (4.98)

which requires at least two DTA curves obtained at two different heating rates.
Reaction order, #, is then determined by the equation

AT A—A,
log (7) = nA log( 1 ) + log¢. (4.99)
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These methods. however, share the disadvantage of all isothermal measurements
where multiple runs are needed. In addition, it is also rather difficult io reproduce
precisely the identical conditions for individual experimental runs'?3.

All of the above methods using the simplifying assumption of Borchardt and
Daniels!3*-135 can be rigorously applied only to stirred systems, the theory of which
was critized by Reed et al.'**. However, it should be noticed that a variety of workers,
on using the same simplifying assumption. reached satisfactory results even in analvs-
ing DTA curves for the thermal decomposition ot solids® #7173,

Another method of DTA kinetic evaluation was introduced by Rabovskiy et
al.’**. The method of Ellerstein’?” was used to calculate the kinetics of glass transi-
tions. The crystallization of glasses was studied by combined methods®3-1%5-13% ¢
wel! as the decomposition of various inorganic compounds!37-131-133.133 a4 disso-
lution of solids in liquids'®Z. Finetics of explosive materials’>? and poly-
mers®2-144.138 ere also investigated. Solving basic DTA equations, Bae!®* pre-
sented a new method for determining the kinetic parameters from a single run. The
determination of the prcbable reaction mechanism of heterogeneous reactions was
attempted by Skvara and Satava®!. Influence of the individual analytical form of
model relations, g(x), introduced into eqn. (4.93) instead of order n. is demonstrated
in Fig. 4.20.

Akita and Kase!??-1%° solved basic DTA equations for an infinite cylindrical

M
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Fig. 4.20. Effect of the individual rate controlling process on the shape of the DTA peakS!.

*For a critical examination see review by Garn, CRC Critical Reviews, Anal. Chen., Sept. 1372, p. 65,
which also presents a thorough discussion of non-isothermal kinetic analysis.
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sample with the first**® and later n-th order’ ®° reactions by Laplace transformations
(similar to the work of Tateno'®') and by Green’s function, under the boundary
condition of a linear rise of temperature of the outer cylinder surface with time.
The change of therma! properties of the sample material due to chemical reaction
is neglected. From these results it was concluded that the peak temperature of the
DTA curve and the temperature of the inflection point of the TG curve agreed with
each other within a certain limit of experimental conditions, i.e., heating rate, cell si. :
and kinetic properties of reactant. Some useful diagrams, permitting judgement of the
coincidence of experimental conditions, were also devised!*?-19°_ Thus, these results
may explain the apparent agreements obtained for the solid-state kinetics. The neces-
sary condition, however, is to hold the thermal properties of the sample unchanged
during the entire interval of the process. This may be achieved by mixing the reactant
with an inert, well-conducting substance (corundum, noble metal powders such as Ag.
Au, Pt, etc.) which act, in fact, as a diluting agent to average the thermal properties
before and after the reaction. Tratore'®? investigated approximations used for the
description of the temperature difference curves of heterogeneous reactions in a
detailed way, including the accuracy and limits of the DTA method for the determi-
nation of kinetic parameters and heat of transformations. Borman and Olson’7 also
discussed DTA kinetics.

A different approach of DTA peak evaluation is based on utilization of the
initial part of the reaction progress where the change in the sample properties is small.
One of the most popular methods is that of Piloyan et al.”!-1¢5 where the combination
of Borchardt’s approximation!??® and the general form of the differential rate equa-
tion 1s used,

E
23R’

- 4.100
% /T) (4.100)

log (d_cz) =~ fog AT = [log (ZA)+log f(a}] —
= constant

The entire procedure is illustrated graphically in Fig. 4.21.

15
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Fig. 4.21. Method by Piloyan?7-233.
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Fig. 4.22. Graphical representation of manual evaluztion of DTA*“. Curve (A) for the decomposition
of freshly powdered KMnQO; (compare Fig. 4.8 and 4.13). (B) Integral method using the plot of
log e(x) vs. (1/T) assuming different rate controlling processes. (C) Differential method assuming
validity of AT=2dz/d*. Compare with the following table cbtained by least squares computer
evaluation using Skvira’s program??! for the required accuracy of 10 percent in the calculated

linearity region.

Case-maodel Intercal of linearity E zZ Standard
(in ) (in Kcal) deciation
[1—-a—=x)3] 949% (0.01-0.95) 53.8 5.6 x 1032° 0.015
1—-1—xt3]3 94% (0.0:1-0.95) 109.6 1.3x10%3 0.015
1—3x—(1—x)%3 80% (0.03-0.83) 97.9 6.9 x103? 0.035
d—-x)In(1—x)+=« 80% (0.03-0.83) 95.6 2.6x103° 0.074
[~In(1—x)]'2 59% (0.01-0.59) 29.2 1.3x310'° 0.081
[—In(1—2)] 59% (0.01-0.59) 60.2 1.4x102* 0.081
[1—(1—-x'2 57% (0.03-0.59) 48.4 2.7x10%% 0.044
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In the case that f(2) is small with regard to E/RT and is a well-behaved func-
tion' 33 (temperature effect on the term E/RT is greater than that induced in f(x) under
a suitably chosen heating rate) then the modified Arrhenius plotof log AT vs. 1/T is
linear with a slope of E£/2.3 R_ It can be directly derived from the advancing edge of the
DTA peak in the region of about 0.1 <x<0.4. The agreement between the results
produced in this way and those obtained from more conventional methods was
reported tc be excellent!37-15%-136,

Girgis'®” hassubjected Pilovan’s method and others to severe criticism because of
deviations found in the calculated kinetic parameters exceeding Zten percent (he
also made a comparison with isothermal DTA methods). It can be shown®? that the
reliability of Piloyan’s method depends on the kind of model relation employed. The
function, (I — x)”, is the least suitable while the functions describing nucleation, crystal
growth and/or diffusion give quite satisfactory results. The best example supporting
the validity of Pilovan’s method is the work of Rasmunsen!®® who recently reported
the theory of DTA based investigations of diffusional growth of particles. He m:de an
analysis!®® of pseudo-exothermal base line drift associated with the agglomeration
process of NiO fine particles dispersed in a Ni metal matrix. Following the Kissinger
approach’?-1%9 the direct proportionality, Cg, between the changes in both the DTA
curve, dA7, and the thermal resistance, dg, can be established. Assuming the product
of thermal resistance, R, and the average cross section of particles, 1 —7?/3ar?, to be
constant for a fixed number of equal sized spheres, it can be derived that

dR = Ryn*3d(r?) (4.101)
where 7 1s the number of voids per volume unit and R, is a constant. Considering
further growth of particles as controlled bv volume diffusion (parabolic law
r=C D\/[_); where r is the radius and D is the diffusion coefficient) the term, d(r?),
can be equated to C3 d(Dr) yielding

dR = Ryn?**C3 d(D1) = C,0, d(D1) (4.102)
together with the equation, dA7 = CxdR, and after integration
AT =C, 93 (Dt— Dgty) (4.103)

In order to eliminate the constant C,,3, the logarithmic form of eqn. (4.103) for two
different time-limits is taken and simplified by iterations utilizing D = Dgexp(— E/RT)
so that ’

(1z2—11)
InATZ=—§(—'l———l—)+ln LT —E(i—i). (4.104)
AT, R\T, T, 1 R

This is identical with the Piloyan eqn. (4.100). The activation energy so calculated'¢®,
37 kcal/mol, corresponds to the activation energy for the diffusion of oxygen in nickel
metal {literature value of 39.5 kcal/mol).

A typical example of DTA evaluation is giver. in Fig. 4.22 in comparison with
the previously described methods**.

The use of DSC substantially simplifies the kinetic data evaluation because the
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DSC curve is a direct record of the rate of heat evolution, dg:dr, which is directly
proportional to the reaction rate (see section 2.2.4). The major contribution to DSC
kinetics methods has been made by Rogers and his coworkers!*3-'2-1%8%_ The sim-
plest method utilizes the equation®*?
3 g Alog d

AQ/T)

where d is the deflection (analogous to A7) from the baseline at the associated absolute
temperature, 7. For simple decompositions which follow the reaction-order concept,
E can be determined from the curve peak maximum using a predetermined value of n
(ref. 143).

E = —2. (4.105)

. RT2 . nd
d (1 —2,.) Cios
where C, 4, is the proportionality constant including the heat of reaction, AH. Rogers
and Smith'°? extended this method to evaluate Z as
__ E¢ exp (E/RT,,)
B RT32, )

There are other DSC based kinetic investigations!®7 =172,

(4.106)

VA

(4.107)

4.5. Use of computers

An accumulation of recorder charts is the characteristic result of present TA
experiments. Owing to the practice of manual data logging the choice of a suitable
chart is somewhat arbitrary. However, two alternative types of input data are possible,
x=2(T) andfor 2 =%(7T). Such data, scanned, and then assembled for calculation
sometimes require a numerical method for obtaining a reliable derivative curve. The
uncertainties inherent in such methods of data collecting will be refiected in the final
results. A more reliable and time-saving approach is to use a digital voltmeter com-
bined with a direct data logging system. The commutator selects the impulses in a
suitable order and transmits them to the voltmeter, which converts the analog voltage
into digital form. The on-line coupled coder then transmits the information together
with a time base to the digital computer system. Another way may be the direct com-
bination of TA output with an analogous computer system. The principle of on-lire
systems is shown in the flow chart in Table 4.3.

In general,!7%-178 for an electronic analog computer the physical variables are
time and voltage, corresponding mathematically to an independent variable and
dependent variable, respectively. The value of the physical variable is taken to be
proportional to the mathematical variable of the equations that the computers present.
Programming requires only the coupling of the appropriate operations by wires to
form the equation desired and the solution may than be displayed visually on an
oscilloscope. However, this method presents many problems which are difficult to
solve, such as those encountered in partial differential equations or matrix calculus.
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TABLE 4.3
FLOW CHART FOR ON-LINE EVALUATION OF EXPERIMENTAL DATA

Possiblv,

J chin
seif-control of Program Tape rrll;-.c!';: c
thic experiment ~ or punc
~
~
== i
: Digital
Print out N Memory
Computer -
Iy
Analog > . Digital ..
voltages > Commutator —1 ‘oltmeter Coding
A
Digital
watch
Y

Initial or Analog Time [ Read ot |
e ») TS > - - Read out
control computer temperature .

conditions computer

Possibly.
self-controtl of
the experiment

The advantage of this method is found particularly in the study of chemical reactions
by stopped flow or relaxation procedures where a large quantity of data is collected
in a short period of time!”2,

The principle of digital computer operation is simply that of fully automated
counting on an abacus using a set of basic elements each of them representing the
number zero in the closed and the number one in the open state. Thus the input data
must be combined with a suitable program to control the calculation of desired
information. The advantage of this method is the ability to calculate stored data in
any time and with an advanced program to direct the calculation to match the desired
accuracy.

Hesitation to calculate kinetic parameters from non-isothermal measurements
probably originated in the rather complicated mathematical operations necessary for
extracting tke desired information. The main contribution of machine computation
to heterogeneous reaction kinetics may be classif.2d as follows:

(1) Automated monitoring of experimental data,
(2) Predicting the experimental course from known kinetic parameters,
(3) Kinetic appraisal of the experimental curves.
The Grst task does not necessarily require fully automated computers as the primary
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purpose is to establish a suitable record of experimental data such as x = %(7)
and/or @ =x(7T), and the accurate calculation of peak areas, derivatives, e.c. In such
cases. a desk-computer containing some logic operations, conditional instructions and
sufficient memory will save time in comparison with normal graphical methods 87189,
All of the necessary corrections for experimental data normalization (e.g., thermo-
couple voltage-temperature dependance)'®2-192-1°3 can be made also. The second
point finds use in engineering problems such as reactor design and the control of
experimental conditions by comparing the actual reaction course with that predicted
theoretically from optimum kinetic data; it may also serve as a check of the quality
of the calculated data. The last point presents the task cf the actual calculation of the
kinetics and the mechanisms of processes and is based on the mathematical methods
reviewed in section 4.2. The analysis inay be accomplished either directly, yvielding the
individual parameters, £, Z and f(z) (preferably by means of digital computers), or
relatively, by comparing the experimental curve with a set of curves of a known
description (by means of an analog computer).

Examples of the latter are: Maclean and Tranter!”?, who used a two-stage
logarithmic amplifier; Wilburn et al.'32-'*7 employed a svstem to simulate the equa-
tion for the center temperature in an infinite cylinder; James and Pardue'”* used an
analog system for linear and non-linear response curves; Gayle and Egger'? for
heating rate curves programming; and Hughes and Hart!?3 used the following patch
diagram tc integrate the equation, ¥ = ¢ exp (— E/RT) (E/RT?)
initial
conditions (35)

Integrat.

v f(x)

using the generated, y = exp (— E/RT) and f(3). The output, df(x)/dz, gives upon
integration the function f(x).

Probably the first to use a digital computer in non-isothermal kinetics was
Anderson®® who solved three simultaneous equations of the general form to yieid E
and Z for three multiple runs with different ¢. Mc Crackin'”7 used a series of weights,
w;, and temperatures, 7T;, to feed the computer for "he evaluation of (1 —x); and g (2);
for each point, j, assuming the validity of reaction order, #n, i.e., g(x); = (Z/d) (E’R)
I _,(E{RT) where I' _, is the incomplete gamma function of minus first order. Assu-
ming the error in «; to be only experimental and independent of its value, g(a}; wil!
have a constant variance so that the best estimate for Z/¢ is given by

(@) Rz omor]
=@ @) o]
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The procedure is carried out for various values of # and E. The values that give the
smallest standard error are then chosen. Beech®® used the equation, In (dz/d?) =
InZ+nin(l—x)—E/RT. with a FORTRAN II computer program. A relative error
least-squares procedurz was used with a regression method to solve kinetic parameters
assuming that the proportionality between d«/ds and dA H/dtis equal to MdE/(A Hew,C),
where A/ is the molecular weight, 4 the pen reflection, & the sensitivity, AH the heat of
reaction, w, the in-weight of the sample and C the width of the chart. respectively.
The term, z. is the ordinary fractional conversion established from the ratio of the
partial to the total peak area which is convenient in DSC measurements. Gwinup'“?®
wrote a FORTRAN IV program to employ data from either a DTA or DSC peak.
The DTA calculation is accomplished by Borchardt and Daniel’s method. In DSC
methods the function, f(2) = z™(1 — )", is used to calculate the specific rate constant,
k. according to (dAH/d?) = (AjAa) " x (1 —AjAa)™".

The method of Schempf et al.'3! is written in FORTRAN II and is applicable
only to first order kinetics. The method utilizes a least squares polynomial fit of a TG
curve with a j-th order polvnomial (1=A0—§—A,x+A2x2—{-.--+ijj), where j is
about 13 and A; are constants received from the least square fit of sample weight-time
data necessary for obtaining the correct derivative curves. The rate constant, k, is
established for each temperature and the corresponding kinetic parameters, £ and Z.
are then evaluated.

The algorithmization method of Sestak et al. 183 proposed the use of numerical
derivation to obtain a derivative of an observed TG curve,

(s —w;_y) . (;3—dw; > +5w; —Suw;_+dw;_,—1w;_3)
(d_:z) _ 2 60
dt/; W...0

where Q is the constant time interval of scanning and W and #,__, are the instan-
taneous and final weight losses, respectively. Using a least squares method, the parallel
evaluation of the kinetic parameters, E and #, is made by means of the simple differ-
ence-differential method. The constant Z is calculated from the original curve. The
program is written in ALGOL and errors in the data evaluation are computed at
various stages to indicate the level of accuracy attained. Because of the experimental
uncertainty and necessity of a precise re-reading of the weight loss data inherent in all
derivative methods, this algorithmization was improved *$* by smoothing the numeri-
cal derivative obtained by Gaussian curve fit. An iterative least-squares refinement of
linear coefficients was applied to exclude points which lie outside the permitted level.
A test of order, 7, obtained by a derivative procedure is then made through the integral
method of Coats and Redfern%® checking the neighboring values of r until the least
relative error in the straight line is achieved. A test of the calculated parameters by
re-evaluation of the weight loss curve is also possible. To extend the applicability of
this program, an impioved method was proposed based on matrix evaluation of the
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FLOW CHART FOR KINETIC ANALYSIS I

Procedures: DERIVATIVE for numerical derivation

SOLUTION of threc nonhomogeneous lincar eguations
EXPONENTIAL-INTEGRAL for p(x)-function

i

Input data: Physical property measured, X
Interval of equidistant scanning
Derivative if available
Initial temperature and heating rate or instantaneous time-temperature
data

Iterations with the decreasing
window to coxclude non-
suitable data points. possi-
bility of dividing the experi-
mental curve to multiple
parts of linear behavior with
regard to the daia treatment

o — bt = vt 4 b e

T

|

i

Polynomial fit of X' = X'(T) to smooth experimental data
points

i

Determination of mean increase and

instantaneous rates

temperature

i

Correlation of calculated and electronically generated
derivatives, if any

i

Calculation of 2, Z, (1 — ) and —In (1 —2x)

-

| Logarithmization and differentiation

I
4

Calculation of E through the combination of two ex-
ponential factors »n, 12 or n, p for sets of

nA log (1 —x) + mA log x and’or
nAlog(l—x)+pAlog(—In(1—2x2n

i

Test of accuracy by back calculation

v

Calculation of Z using EXPONENTIAL-INT.

|
-

Print out:

E, Z and best comtination of exponential-factors n, m zad n, p
including their errors
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gzneral, but formal kinetic equation, dz/dr=kx™(1 —x)"[—In (1 —2)]®, using its
difference-logarithmic form as shown in the flowchart in Table 4.4.

Recently Nolan and Lemay-°' studied a systematic variation of the three
parameters 7. n and p and found eqn. (-4.32) useful for a preliminary appraisal of
reaction mechanism or as a means for checking isothermal results. The program is
written in FORTRAN IV and performs the DSC peak area integration by Simpson’s
rule and the linear least-squares analysis of the Arrhenius plot including a t-test to
indicate the degree of linearity. The possible rate equation is limited by considering
those cases which have a relatively small range of m, n or p and/or which vield a
Iimited range of activation energies as the range of x is varied.

Satava and Skvara®! used ALGOL 60 language and Borchardt and Daniel’s
method to facilitate calculations of the fraction decomposed and kinetic parameters
from a DTA peak. The improved program of Skvara'®! is similar to the procedure
used in the conventional estimation of reaction mechanism from isothermal measure-
ments, as was recently demonstrated by Johnson and Gallagher'®®. The latter method

TABLE 4.5
FLOW CHART FOR KINETIC ANALYSIS II

Procedures: SIMPSON for peak integration
LEAST-SQUARE to determine lincarity
ENERGY to evaluate E using p{x)
ZET to evaluate Z using p(x)

i

Input data: DTA curve deflection in the equidistant points. initial and final
temperature, heating rate, print control

Specific heats of the Evaluation of fractional conversion,
reactant and the pro-
duct if different !

Evaluation of functions g(x) and —log g(2)

1

Appraisal of the plot —log g(x) vs. I/T

v

Ordering of the functions —log g(z) z:cording to the region of
the linearity

1
Evaluation of kinetic parameters £ and Z by least squares
method

i

Print out: E, Z and linearity regiors with their errors for individual mechanisms
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is written in FORTRAN IV and based on Satava’s method*® for the estimation of
model relation from the linear fit of log (g(x)) vs. /7. A least-squares method is used
throughout the treatment which is based on comparing different reaction mechanisms
to achieve the greatest region of lineanty. Kinetic parameters are evaluated by the
numerical solution of the series for the p(x)-function using iterative successions, as
shown in the flow chart of Table4.5. A universal program combining flow charts in
Tables 4.4 and 4.5 is in preparation'85,

Vachuska and Vobofil''? described a program in ALGOL to evaluate kinetic
parameters from the denivative form of the logarithm of the rate zquation to enable the
solution for a non-linear temperature rise during the heating of a sample. The ec...."on

TABLE 4.6
FLOW CHART FOR KINETIC ANALYSIS III

Procedures: DERIVATIVE 1st ORDER, .. T
DERIVATIVE 2nd ORDER, i, T
DERIVATIVE 3rd ORDER, =

!

Input data: Instantaneous Temperature, T,
Time, r and
Weight, v

!

Evaluation of fractional conversion,

i

Input of /7 and n Evalu;\gion of X = Y m-n, where X and Y are functions of u, ;z-', w,
if presuggested - w» T, T and T by least squares method using procedures

DERIVATIVE s

i

Errors in m and n

!

Correction of 1 and n by reintroducing to the origin.: equation
a=Zexp(—E/IRT)x=(1—x)

i

Soluation of the original equation with regard to the constants E and
Z by least squares method

{

Calculation of a correlation coefficient

i

Print out: E, Z, m and n and their errors
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of a straight line is solved with regard to £ and n using input data of instantaneous
values of weight. «. temperature, 7, and time, 7. The temperature rise and the first-
and second-order derivatives, are computed numerically. This program is now being
improved '?? to utilise a polynomial fit throughout the experimental points. It is
possible to make a direct soluiion of derivatives, even of the third order, required to
exter.d the calculation in order to obtain the values of the two exponential factors, m
and n (sec Table 4.6): See also the work of Zsekely''S.

There are. of course, many more applications of computer techniques?®® to
non-isothermal kinetics such as polymeis!®9-173-163=19¢  pegr_equilibrium experi-
mental conditions®®”, heat transfer effects!®*, calorimetry'?3-19°%; and their number
increases continuously. The computer technique has been a welcome tool to facilitate
experimental data processing'35-!5°_ [t should be kept in mind that for advanced
physical investigations. only a very sophisticated program may give a reliable result.
The high sensitivity to random errors and lead-in misinformation is troublesome and
may often be misleading particularly when relating the final considerations to the
numerical print out. Hence, the manual evaluation still is of gr2at use because the
mistakes introduced or generated can be continvously corrected by iogical con-

siderations.
Note added in proof

These equations predict straight lines when log (—In (1 —x)) is plotted against
In 7. T and 1;T. respectively, and E is computed as (4.567 RT; tg f3), (4.367 RT* tg )
and (4.567 tg f—2RT). respectivelv. The precision of these approximations has
recently been illustrated by Broido and Williams (Tlierniochim. Acta. 6 (1973) 245)
who found that a higher degree of linearity is given by eqn. (4.73), 1.c. the last of
above-mentioned plots is about twice as good as the plot to the second approximation
than the first (justified on the basis of an asymptotic expansion with a non-dimensional
activation energy as the large parameter). It also explains the deviations obtained in
the E values when using different methods of kinetic data calculation (see refs. 31. 66,
113).
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