Note

Thermodynamics of binary mixtures

Excess volumes of mixing of some binary dioxane mixtures

A. K. ADYA, B. S. MAHL AND P. P. SINGH* Department of Chemistry and Biochemistry, Punjab Agricultural University, Ludhiana (India) (Received 9 January 1974)

It is the purpose of this paper to examine statistical mechanical theory of Flory of mixtures of non-electrolytes for some binary dioxane mixtures varying from nearly ideal to far from ideal.

EXPERIMENTAL

Benzene, toluene, *p*-xylene, carbon tetrachloride, carbon disulphide and dioxane were purified and their purity was checked as reported earlier^{1,2}. The excess volumes were measured dilatometrically as reported earlier¹.

RESULTS

The results at 30°C are given in Table 1. The results at 20°C can be calculated from the parameters given in Table 2. The data were fitted to the expression:

$$V^{\rm E}/x_1 x_2 = A + B(x_1 - x_2) + C(x_1 - x_2)^2$$
(1)

where A, B and C are constants and x_1 and x_2 are the mole fractions of components 1 and 2 in the mixture. These parameters were evaluated by fitting the experimental values of V^E/x_1x_2 to eqn (1) by the method of least squares. The values obtained along with the standard deviations $\sigma(V^E)$ of the observed and calculated V^E values are recorded in Table 2.

DISCUSSION

 V^{E} for dioxane + benzene has been determined by Ramakrishna and Chand³ but their values are considerably higher than ours. However, our V^{E} values for this system at 30 °C are comparable to the V^{E} values determined by Naidu and Krishnan⁴. We are unaware of any data at 30 °C with which to compare our results for the other raixtures.

^{*}To whom all correspondence should be addressed.

TABLE 1

EXCESS VOLUMES V^{E} AT MOLE FRACTIONS x_1 OF COMPONENT ! AT 303.15 K, AND COMPARISON OF EXPERIMENTAL AND THEORETICAL $V^{\rm E}$ VALUES AT ($x_1 = 0.2, 0.5, 0.8$)

<i>x</i> 1	$V^{E}(cm^{3} mol^{-1})$	Flory (cm ³ mol ⁻¹)	<i>x</i> ₁	V^{E} (cm ³ mol ⁻¹)	Flory (cm ³ mol ⁻¹)
Dioxane	(1) + benzene (2)				
0.0702	-0.0430		0.6804	-0.0842	
0.1400	-0.0700		0.7665	-0.0637	
(0.2000)	(-0.0900)	(-0.0350)	(0.8000)	(-0.0540)	(-0.0349)
0.2031	-0.0910	(0.8092	-0.0518	(,
0.3021	-0.1078		0.8710	-0.0361	
(0.5000)	(-0.0108)	(-0.0343)	0.07.0	0.0201	
0.5031	-0.1071	(0.000 10)	0.9005	-0.0275	
0.5771	-0.1010		0.5005	0.0275	
Dioxane	(1) + tolaene (2)				
			(0.5000)	(-0.0170)	(0.1227)
0.0986	-0.0045		0.5848	-0.0151	. ,
0.1900	-0.0091		0.6229	-0.0140	
(0.2000)	(0.0090)	(0.0011)			
0.2599	-0.0118		0.7170	-0.0100	
0.3338	-0.0139		0.7700	-0.0080	
			(0.8000)	(-0.0070)	(0.0343)
0.3692	-0.0152		0.8100	-0.0068	(0002.00)
0 3912	-0.0151		0.8901	-0.0039	
0.4200	-0.0164		0.0701	0.0057	
Dioxane	(1)+carbon tetrac	hloride (2)			
0.0721	-0.1248	-	0.6935	-0.2511	
0.1870	-0.2368		0.7058	-0.2510	
(0.2000)	(-0.2400)	(-0.0618)	(0.8000)	(-0.1700)	(-0.0547)
0.3499	-0.3118		0.8050	-0.1685	
0.3676	-0.3211		0.8880	-0.0954	
0.4894	-0.3395		0.9160	-0.0768	
(0.5000)	(-0.3401)	(-0.1021)			
0.6090	-0.3178	<pre></pre>			
Dioxane	(1)+ <i>p</i> -xylene (2)				
0.1100	0.0349		0.6327	0.1368	
0.1805	0.0585		0.7453	0.1189	
(0.2000)	(0.0640)	(0.0491)			
0.2500	0.0802		0.7578	0.1180	
0.3168	0.1000		0.7743	0.1132	
			(0.8000)	(0.1040)	(1) 0667)
0 4078	0 1201		0 8440	0.0900	(0.0007)
(0.5000)	(0.1350)	(0.0460)	0.0110	0.0700	
0.5189	0.1364	(0.0-00)	0.9303	0.0475	
Dioxane	(1)+carbon disult	phide (2)			
	(.)		(0.5000)	(0.8880)	(-0.0690)
0 0805	0 2078		0 5756	0.0000	(0.0070)
0.1607	0 4397		0.5750	0.0500	
(0.2000)	(0 5200)	(~0.0454)	0.0701	0.0100	
0.2445	0.6021	् <u></u>	0.7788	0.6910	

(Continued on p. 320)

T,	AB	LE	1	(continued)
----	----	----	---	-------------

<i>x</i> ₁	$V^{E}(cm^{3} mol^{-1})$	Flory ($cm^3 mol^{-1}$)	xı	$V^{E}(cm^{3} mol^{-1})$	Flory (cm ³ mol ⁻¹)
Dioxane	(1)+Carbon disul	phide (2) (continued)		<u> </u>	
			(0.8000)	(0.6450)	(-0.0339)
0.3198	0.7198		0.8787	0.4516	
0.3800	0.7964		0.9400	0.2425	
0.4599	0.8681				
Carbon o	lisulphide (1) + tolu	ene (2)			
0.1001	0.1198		0.6221	0.3565	
(0.2000)	(0.2200)	(-0.0361)			
0.2076	0.2274		0.7100	0.3165	
0.3110	0.3047		0.7710	0.2736	
			(0.8000)	(0.2400)	(-0.0694)
0.4303	0.3583		0.8550	0.1940	
0.4811	0.3688		0.8990	0.1420	
(0.5600)	(0.3700)	(-0.0863)			
0.5841	0.3659	-			
Carbon d	lisulphide (1)+p-xy	dene (2)			
			(0.5000)	(0.3600)	(-0.0791)
0.0801	0.0850		0.5786	0.3573	
0.1300	0.1395		0.6960	0.2982	
0.1820	0.1901		0.7916	0.2489	
(0.2000)	(0.2050)	(-0.0435)	(0.8000)	(0.2400)	(-0.0676)
0.2502	0.2432	. ,	0.8136	0.2292	
0.3200	0.2938		0.8401	0.2032	
0.4112	0.3387		0.9282	0.0992	
0.4809	0.3572				

TABLE 2

VALUES OF PARAMETERS OF EQN 1

Mixture	Temp. (K)	$A (cm^3 mol^{-1})$	B (cm ³ mol ⁻¹)	$C \\ (cm^3 mol^{-1})$	V^{E} (cm ³ mol ⁻¹)
Dioxane (1) +	293.15	-0.352	0.1012	0.1500	0.001
benzene (2)	303.15	-0.4288	0.1852	-0.0584	0.007
Dioxane (1) +	293.15	-0.0671	0.010	0.0381	0.0008
toluene (2)	303.15	-0.0650	0.0097	0.0341	0.001
Dioxane (1) + carbon	293.15	-0.9400	0.2500	-0.048	0.002
tetrachloride (2)	303.15	-1.3600	0.7054	0.5491	0.002
Dioxane (1)+	293.15	0.380	-0.0531	0.083	0.001
p-xylene (2)	303.15	0.5333	0.2114	0.0005	0.001
Dioxane (1)+carbon	293.15	2.680	0.0407	1.026	0.003
disulphide (2)	303.15	3.3605	0.7472	0.1455	0.002
Carbon disulphide	293.15	1.200	0.0001	0.1450	0.001
(1)+toluene (2)	303.15	1.4832	0.1463	0.0423	0.001
Carbon disulphide	293.15	0.940	0.2010	0.3283	0.002
(1)+p-xylene (2)	303.15	1.4388	0.1988	-0.1318	0.001

The results were examined for Flory's theory⁵. Flory considered a molecule in a liquid to be composed of segments each having a 'hard-core' volume v^* but occupying an effective volume v in the liquid. Excess volumes V^E , according to this theory, were calculated from the formula⁵:

$$V^{\rm E} = \frac{(x_1 V_1 / \tilde{v}_1 + x_2 V_2 / \tilde{v}_2 (\phi_1 \tilde{v}_1 + \phi_2 \tilde{v}_2)^{7/3} (\tilde{T} - \tilde{T}^{\rm c})}{4/3 - (\phi_1 \tilde{v}_1 + \phi_2 \tilde{v}_2)^{1/3}}$$
(2)

where x_i , V_i and ϕ_i denote the mole fraction of i, the molar volume of i and the site fraction $x_1 V_1 / \tilde{v}_1 / (x_1 V_1 / \tilde{v}_1 + x_2 V_2 / \tilde{v}_2)$ of i (i = 1, 2), respectively, and \tilde{T} and \tilde{T}^c are reduced temperatures defined by the formulae:

$$\tilde{T} = (\phi_1 P_1^* \tilde{T}_1^\circ + \phi_2 P_2^* \tilde{T}_2) / (\phi_1 P_1^* + \phi_2 P_2^* - \phi_1 \theta_2 \chi_{12})$$
(3)

$$\tilde{T}^{\circ} = \{(\phi_1 \tilde{v}_1 + \phi_2 \tilde{v}_2)^{1/3} - 1)\}(\phi_1 \tilde{v}_1 + \phi_2 \tilde{v}_2)^{-4/3}$$
(4)

where P_i^* is the characteristic pressure defined by

$$P_1^* = \alpha_1 T \tilde{v}_1^2 / K_i . \tag{5}$$

Where K_i denotes the isothermal compressibility, and $\theta_2 \chi_{12}$ is a pair-interaction parameter. The reduced volume $\tilde{v}_i = v_1/v^*$ for the pure substance i was calculated from the expansivity α_i using the relation

$$\tilde{v}_i = \{1 + \alpha_i T/3(1 + \alpha_i T)\}^3.$$
(6)

There is, however, an inherent difficulty in Flory's original method of computing V^{E} . The difficulty stems from the fact that the reduced temperature \tilde{T} of the mixture is dependent on the parameter $\theta_{2\chi_{12}}$ which could be evaluated from a knowledge of some other excess functions for the system. However, in the absence of values of $\theta_{2\chi_{12}}$ for example from the measured values of H^{E} , we have made the approximation that $\theta_{2\chi_{12}} \approx 0$. The reduced temperature \tilde{T} of the mixture was then calculated from the relation

$$\tilde{T} = P_1^* \phi_1 \tilde{T}_1 + \phi_2 P_2^* \tilde{T}_2 / (\phi_1 P_1^* + \phi_2 P_2^*).$$
(7)

The V^{E} values calculated in this manner at 30 °C are given in Table 1.

Examination of Table I shows that the theory correctly predicts the sign of V^E for dioxane + benzene, dioxane + p-xylene and dioxane + carbon tetrachloride systems only, although the quantitative agreement is not very impressive. For all other systems the theory fails to predict the sign as well as the magnitude of V^E . The agreement might have been better or worse if we had been able to use the original expression for T.

Nevertheless there is a possible acid-base interaction between dioxane and benzene as a factor leading to negative volume change. Further if dioxane forms charge-transfer complexes of increasing stability as the electron donating power of the hydrocarbon increases, it is to be expected that V^E at a constant mole-fraction should increase in a reasonably regular manner⁶. The present results indicate that

 V^{E} for an equimolar mixture of dioxane varies as

Benzene>toluene>p-xylene.

This is suggestive of the fact that dioxane forms charge-transfer complexes of decreasing stability with toluene and *p*-xylene.

REFERENCES

- 1 R. K. Nigam and P. P. Singh, Trans. Faraday Soc., 65 (1969) 961.
- 2 B. S. Mahl, S. L. Chopra and P. P. Singh, J. Chem. Thermodyn., 3 (1971) 363.
- 3 V. J. Ramakrishna and K. Chand, J. Phys. Soc. Japan, 26 (1969) 239.
- 4 P. R. Naidu and V. R. Krishnan, Trans. Faraday Soc., 61 (1965) 1347.
- 5 P. J. Flory and A. Abe, J. Amer. Chem. Soc., 87 (1965) 1833.
- 6 W. A. Duncan, J. P. Sheridan and F. L. Swinton, Trans. Faraday Soc., 62 (1966) 1092.

322