Thermochimica Acta, 10 (1974) 63-72 © Elsevier Scientific Publishing Company, Amsterdam – Printed in Belgium

IDEAL GAS STATE THERMODYNAMIC FUNCTIONS FOR MONOHALOGENATED CYCLO-ALKANES

M. J. KELLY* AND J. LIELMEZS

Chemical Engineering Department, The University of British Columbia, Vancouver 8, B.C. (Canada) (Received 6 May 1974)

ABSTRACT

The thermodynamic functions, C_p° , S° , $-(F^{\circ}-H_0^{\circ})/T$ and $(H^{\circ}-H_0^{\circ})/T$, have been calculated in the ideal gas state at 1 atm for the following monohalogenated cycloalkanes: bromocyclopropane, bromocyclobutane, chlorocyclobutane, fluorocyclobutane, bromocyclopentane. The effect of pseudorotation of the cyclobutanes and bromocyclopentane on the thermodynamic function values was considered to be negligible.

INTRODUCTION

The published spectroscopic and structural data for several halogenated monocycloalkanes¹⁻¹¹, have made it possible to calculate the thermodynamic functions heat capacity, enthalpy, entropy, and free energy for bromocyclopropane, bromocyclobutane, chlorocyclobutane, fluorocyclobutane and bromocyclopentane in the ideal gas state at a pressure of 1 atm. The functions for each given compound were calculated by means of the well-known statistical mechanical methods.

The results presented in Table 1 were fitted¹² to eqn (1)

$$\Lambda = a + bT + cT^2 \tag{1}$$

where Λ is the thermodynamic function at temperature T (K). The constants a, b and c (eqn 1) were obtained using least squares curve fitting methods¹² and are found in Table 2 and Figs. 1-4. Table 2 also lists a, b and c values for iodocyclobutane. These a, b and c values of iodocyclobutane were estimated from Figs. 1-4 extrapolating the corresponding a, b and c values of bromo-, chloro- and fluorocyclobutanes. Table 3 presents the values of the molecular parameters used in thermodynamic function calculations.

^{*}Present address: Prince George Pulp & Paper, Prince George, B.C., Canada.

DISCUSSION

Bromocyclopropane

The thermodynamic functions (Table 1) for bromocyclopropane were calculated using the fundamental vibration frequency assignments made by Rothschild¹ and the structural data of Lam and Dailey².

Halocyclobutanes

The structural configurations and the vibrational spectra of halocyclobutanes have been studied by several investigators $^{3-9}$. In this work to calculate the thermo-

TABLE 1

HEAT CAPACITY, ENTROPY, FREE ENERGY AND ENTHALPY FUNCTION

	Temperature (K)	Bromo- cyclo- propane	Bromo- cyclo- butane	Chloro- cyclo- butane	Fluoro- cyclo- butane	Bromo- cyclo- pentane
Heat capacity,						
C_p^2 (cal mol ⁻¹ K ⁻¹)	273.15	15.51	18.57	17.57	16.42	24.27
	298.15	16.91	20.30	19.29	18.13	26.37
	350.00	19.77	23.85	22.85	21.70	30.69
	400.00	22.35	27.09	26.13	25.03	34.63
	450.00	24.69	30.04	29.15	28.12	38.26
	500.00	26.77	32.70	31.88	30.94	41.56
	550.00	28.60	35.09	34.34	33.48	44.55
	600.00	30.22	37.24	36.55	35.78	47.25
	650.00	31.65	39.17	38.55	37.85	49.71
	700.00	32.92	40.93	40.37	39.74	51.95
	750.00	34.05	42.54	42.03	41.46	54.00
	S00.00	35 .0 7	44.01	43.55	43.03	55.89
	850.00	35.98	45.37	44.95	44.48	57.63
	900.00	36.81	46.61	46.24	45.81	59.23
	950.00	37.56	47.77	47.43	47.04	60.72
	1000.00	38.24	48.84	48.5	48.17	62.09
Entropy,	273.15	69.73	74.53	69.12	68.75	84.51
S ₀ ° (e.u.)	298.15	71.30	76.38	70.88	70.40	86.87
	350.00	74.50	80.18	74.52	73.85	91.71
	409.00	77.53	83.80	78.00	77.19	96.29
	450.00	80.49	87.36	81.45	80.52	100.80
	500.00	83.38	90.84	84.84	83.80	105.10
	550.00	86.18	94.22	88.16	87.03	109.40
	600.00	88.88	97.52	91.39	90.19	113.50
	650.00	91.49	100.70	94.12	93.27	117.60
	700.00	94.01	103.80	97.57	96.27	121.40
	750.00	96.43	106.80	160.50	99.18	125.20
	800.00	98.77	109.70	103.40	102.00	128.90
	850.00	101.00	112.50	106.20	104.80	132.40
	900.00	103.20	115.20	108.90	107.40	135.80
	950.00	105.30	117.90	111.50	110.00	139.20
	1000.00	107.30	120.40	114.00	112.60	142.40

TABLE 1 (continued)

	Temperature (K)	Bromo- cyclo- propane	Bromo- cyclo- butane	Chloro- cyclo- butane	Fiuoro- cyclo- butane	Bromo- cyclo- pentane
Free energy	273.15	58.59	61.76	56.95	57.23	68.56
function.	298.15	59.59	62.91	58.05	58.27	70.00
$-(F^{\circ}-H_{0}^{\circ})/T$	350.00	61.56	65.18	60.22	60.32	72.86
$(cal mol^{-1} K^{-1})$	400.00	63.37	67.28	62.22	62.22	75.50
	450.00	65.11	69.32	64.17	64.07	78.06
	500.00	66.79	71.30	66.07	65.88	80.55
	550.00	68.43	73.23	67.92	67.66	82.98
	600.00	70.02	75.11	69.75	69.40	85.36
	650.00	71.57	76.96	71.53	71.12	87.68
	700.00	73.08	78.77	73.28	72.81	89.96
	750.00	74.56	80.54	75.00	74.47	92.18
	800.00	76.00	82.27	76.69	76.10	94.36
	850.00	77-41	83.97	78.34	77.71	96.50
	900.00	78.78	85.63	79.96	79.29	98.59
	950.00	80.12	87.25	81.55	80.24	100.60
	1000.00	81.43	88.85	83.12	82.36	102.60
Enthalpy function,	273.15	11.14	12.77	12.17	11.52	15.95
$(H^\circ - H_0^\circ)/T$	298.15	11.71	13.47	12.83	12.13	16.87
$(cal mol^{-1} K^{-1})$	350.00	12.94	15.00	14.30	13.53	18.85
-	400.00	14.16	16.52	15.78	14.97	20.79
	450.00	15.38	18.04	17.28	16.45	22.71
	500.00	16.59	19.54	18.77	17.92	24.60
	550.00	17.75	20.99	20.24	19.37	26.43
	600.00	18.86	22.41	21.64	20.79	28.19
	650.00	19.92	23.75	22.59	22.15	29.88
	700.00	20.93	25.03	24.29	23.46	31.49
	750.00	21.87	26.25	25.53	24.71	33.04
	800.00	22.77	27.42	26.71	25.92	34.52
	850.00	23.61	28.53	27.84	27.06	35.92
	900.00	24.42	29.59	28.92	28.15	37.26
	950.00	25.18	30.62	29.95	29.20	38.54
	1000.00	25.90	31.58	30.93	30.21	39 77

dynamic properties for bromo-, chloro- and fluorocyclobutane (Table 1) we used the vibrational assignments of Durig et al.⁸. The atomic coordinates for chlorocyclobutane with the halogen in the equatorial position have already been calculated by Kim and Gwinn⁴. However, they did not observe the halogen (X = Cl) in the axial position. On the other hand, Kim and Gwinn⁴ indicated that the structure for fluorocyclobutane is similar to that for chlorobutane; and so they recommended a bond length of 1.37 Å for the C-F bond. Additional to this, in this work we assume that such is the case also for bromocyclobutane (Fig. 1) and we have adopted^{3.9} a bond length of 1.939 Å for the C-Br bond to calculate the atomic coordinates of bromine.

Since Kim and Gwinn⁴ did not observe the axial position of the halogen atom and since the potential barrier to pseudorotation appears to be high⁴, only the classical thermodynamic function values for the isomer with the halogen (X = Br, Cl, F) in the equatorial⁴ position have been calculated (Table 1).

Fig. 1. Structure of bromocyclobutane.

The variation of the coefficients a, b and c describing eqn (1) with the atomic weight of the substituent halogen atom (X = Br, Cl, F), is shown in Figs. 2–5 for each of the calculated thermodynamic functions.

Since the obtained curves (Figs. 2-5) show smooth monotonic behavior, it is possible to extend these curves and by extrapolation to estimate the a, b, and c values for the iodocyclobutane (Table 2). However, for none of the listed compounds (Tables 1 and 2) we have supporting experimental evidence.

Fig. 2. Variation of the heat capacity coefficients (Table 2) with the atomic weight of substituent atom.

Fig. 3. Variation of the free energy function coefficients (Table 2) with the atomic weight of the substituent atom.

Fig. 4. Variation of the entropy coefficients (Table 2) with the atomic weight of the substituent atom.

Fig. 5. Variation of the enthalpy function coefficients (Table 2) with the atomic weight of substituent atom.

Fig. 6. Structure of bromocyclopentane with possible conformers. (a) Bromocyclopentane structure used to calculate the moment of inertia product; (b) Possible axial conformer; (c) Possible equatorial conformer.

TABLE 2

CALCULATED CONSTANTS a, b AND c IN EQN (1)

	<i>a</i>	b×102	c×10 ⁵	Standard error ^a
Bromocyclopropane				
G	-1.7891	7.35	-3.386	0.2266
S	50.8437	7.37	-1.721	0.0249
$-(F^{\circ}-H_{0}^{\circ})/T$	47.8081	4.22	-0.8661	0.0501
$(H^\circ - H^\circ_0)/T$	3.0357	3.15	- 0.8550	0.0686
Bromocyclobutane				
C:	-2.7016	8.93	-3.817	0.2465
S	52.2396	8.63	- 1.806	0.0370
$-(F^{\circ}-H^{\circ}_{0})/T$	49.3369	4.82	0.8789	0.0462
$(H^\circ - H^\circ_0)/T$	2.9026	3.80	0.9274	0.0799
Chlorocyclobutane				
<i>C</i> ;	-4.102	9.06	- 3.832	0.2235
S°	47.8924	8.16	- 1.534	0.1055
$-(F^z-H_0^z)/T$	45.1685	4.56	- 0 .7680	0.0425
$(H^\circ - H^\circ_0)/T$	2.7239	3.60	-0.7658	0.1287
Fluorocyclobutane				
C _p	- 5.7489	9.22	-3.86	0.1967
S	48.2992	7.79	-1.358	0.0858
$-(F^{\circ}-H_{0}^{\circ})/T$	46.1452	4.27	-0.6492	0.0372
$(H^\circ - H^\circ_0)/T$	2.153)	3.53	-0.7091	0.1227
Iodocyclobutane (estimated)				
<i>C</i> :	-1.93	8.85	-3.75	
S	59.0	8.80	-1.90	
$-(F^{\circ}-H_{0}^{\circ})/T$	56.5	4.83	-0.905	
$(H^{\circ}-H^{\circ})/T$	3.00	4.00	-0.175	
Bromocyclopentane				
С;	-1.7571	10.86	-4.521	0.2570
S°	56.4023	10.90	-2.300	0.0265
$-(F^{\circ}-H^{\circ}_{o})/T$	52.9403	6.06	-1.099	0.0572
$(H^\circ - H_0^\circ)/T$	3.4621	4.84	-1.201	0.0766

* Standard error of Y is the number S, where $S = \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y}_i)^2/n - m - l}$ such that n is the number

of observations; m is the number of independent variables; Y_i is the *i*th calculated value of Y (Table 1); and Y_i is the *i*th extrapolated value of Y (eqn. 1).

Bromocyclopentane

The thermodynamic functions (Table 1) for bromocyclopentane were calculated using the fundamental frequencies assigned by Durig et al.¹⁰. The belief advanced by Durig et al.¹⁰ that the chloro- and bromocyclopentane rings may not undergo pseudorotation (form conformers) is indirectly supported by Vovelle et al.¹¹ through their observations that the position of the bromine atom (axial or equatorial, Fig. 6) does not affect the fundamental frequencies. These considerations have permitted to calculate the thermodynamic functions for bromocyclopentane as a planar ring mole-

Bromocyclopropane Brom	novelohuta		Chloros	which		Plusses -	and also in	-	2		
	****	211	- HULLIN	<i>Jenunum</i>	<u>.</u>	ruoror	chcioaniai	21	Bromo	Sectopenta	16
Fundamental frequencies [V, cm ⁻¹]											
3078* 3015 2957 3020) ^b 3005	2977	3015	3005	2967	3006	2992	2912	2994°	2976	2924
1448 1423 1264 2962	2868	1459	2923	2854	1480	2861	2950	1472	2875	2852	1473
1238 1200 1165 1451	1262	1197	1455	1288	1207	1453	1361	1242	1449	1315	1208
1089 1051 1030 1092	2 486	1015	1103	1024	851	1140	1098	1079	1219	1209	1178
927 887 862 808	3 785	669	848	181	717	959	783	750	1003	2976	2924
810 760 545 633	302	143	530	365	159	599	456	166	2875	2852	1477
493 309 273 2992	2977	1440	2989	2979	1430	2988	2966	1441	1403	1282	1237
1227	1181	1159	1266	1242	1172	1263	1221	1161	1134	1066	1028
1025	5 963	938	1123	126	940	1049	1057	921	1003	935	803
896	824	247	016	815	286	899	835	371	742	584	305
									231	903	886
									742	716	515
									452	289	150d
Principal moments" of inertia, g cm ²	3 × 1039										
IA = 34.304	8 a Y	.356		(A = 8.3	120		<i>I</i> _A = 19.	887		<i>I</i> = 15.	661
Z _B = 5.105	/n = 51	,501	-	(_B = 33.4	661		/n == 24.	878		$I_{\rm m} = 63$.	729
<i>I</i> c = 32,695	<i>l</i> c = 56	.377	-	/c = 38.3	149		lc = 8.	241		$I_{\rm C} = 71.$	47.3
Molecular shape factor, σ											
0 = 1	0 m]		v				0 m]			1 8 0	
Molecular weight											
120.97	135.012			90.544			74.094			149.02	

t

Ę

TABLE 3

70

cule³ existing structurally in state as shown by Fig. 6a. This point is strengthened through the observation that 10% error in the $I_{(ABC-planar)}$ value would yield an inaccuracy for entropy and free energy function values of $[\ln I_{(ABC-planar)} - \ln I_{(ABC-planar)}]$, about 0.105 cal mol⁻¹ K⁻¹.

The missing fundamental ring puckering frequency for bromocyclopentane¹⁰ was estimated to be 150 ± 8 cm⁻¹ (Table 3) by comparing (see Fig. 7) the frequencies of bromocyclopentane to those of chlorocyclopentane¹⁰ for which all of the fundamental frequency values were available.

Fig. 7. Estimation of the missing fundamental ring puckering frequency for bromocyclopentane.

ACCURACY

Since there was no available experimental evidence, it was not possible to compare the calculated thermodynamic function values with the experimental data. However, indirectly a measure of the accuracy of the presented thermodynamic function values (Table 1) may be obtained, as the structural and spectroscopic data used (Table 3) are highly accurate and none of the listed compounds may undergo pseudorotation. In view of this, it is expected that the calculated classical thermodynamic function values will be within the possible measurement error range.

ACKNOWLEDGEMENT

The financial assistance of the National Research Council of Canada is gratefully acknowledged.

REFERENCES

- 2 F. M. K. Lam and B. P. Dailey, J. Chem. Phys., 49 (1968) 1588.
- 3 Y. Yukawa (Ed.), Handbook of Organic Structural Analysis, W. A. Benjamin, New York, 1965.

¹ W. G. Rotschild, J. Chem. Phys., 44 (1966) 3875.

- 4 H. Kim and W. D. Gwinn, J. Chem. Phys., 44 (1966) 865.
- 5 J. R. Durig and J. N. Willis, J. Chem. Phys., 52 (1970) 6108.
- 6 W. G. Rotschild, J. Chem. Phys., 45 (1966) 3599.
- 7 W. G. Rotschild, J. Chem. Phys., 44 (1966) 1712.
- 8 J. R. Durig, J. N. Willis and W. H. Green, J. Chem. Phys., 54 (1971) 1547.
- 9 W. G. Rotschild and B. P. Dailey, J. Chem. Phys., 36 (1962) 2931.
- 10 J. R. Durig, J. M. Karriker and D. W. Wertz, J. Mot. Spectrosc., 31 (1969) 237.
- 11 F. Vovelle, A. Le Roy and S. Odiot, J. Mol. Struct., 11 (1972) 53.
- 12 University of British Columbia Computing Centre, "TRIP" program, 1973.