Thermochimica Acta, 10 (1974) 207-210 © Elsevier Scientific Publishing Company, Amsterdam – Printed in Belgium

THE THERMAL DECOMPOSITION OF TRANSITION-METAL COMPLEXES CONTAINING HETEROCYCLIC LIGANDS

4. SUBSTITUTED-PYRIDINE COMPLEXES OF Mn, Ni, Cu AND Cd

C. T. MORTIMER AND JANICE L. McNAUGHTON Chemistry Department, University, Keele, Staffordshire (England) (Received 17 June 1974)

ABSTRACT

Enthalpies of the overal! decomposition reactions

 $MX_2L_2(c) \rightarrow MX_2(c) + 2L(g)$

and of the intermediate stepwise loss of ligand, L, where X is Cl or Br; L is 3-chloropyridine, 3-bromopyridine, 2-chloropyridine, 2-bromopyridine, or 2-methoxypyridine; and M is Mn, Ni, Cu, or Cd have been measured by use of a differential scanning calorimeter. Enthalpies of sublimation of NiCl₂(3-chloropyridine)₂, NiCl₂(3-bromopyridine)₂ and CuCl₂(3-bromopyridine)₂ have been determined. Values of the metalnitrogen bond dissociation energies in these compounds have been calculated. A value for the specific heat of CuCl₂(2-chloropyridine)₂ is reported.

INTRODUCTION

In the previous paper of this series¹ we reported enthalpies of thermal decomposition of the complexes MX_2L_2 , where M is cobalt, X is Cl or Br, and L is 3-chloropyridine (3Clpy), 3-bromopyridine (3Brpy), 2-chloropyridine (2Clpy), 2-bromopyridine (2Brpy), or 2-methoxypyridine (2MeOpy). We now present data for the corresponding complexes in which M is manganese, nickel, copper, or cadmium.

The overall decomposition reaction (1) was divided into two stages, reactions (2) and (3), except for the cupric bromide complexes which decomposed to cuprous bromide, bromine and gaseous ligand, reaction (4).

$$MX_{2}L_{2}(c) \rightarrow MX_{2}(c) + 2L(g)$$
(1)

 $MX_2L_2(c) \rightarrow MX_2L(c) + L(g)$ ⁽²⁾

$$MX_2L(c) \rightarrow MX_2(c) + L(g)$$
 (3)

$$CuBr_2L_2(c) \rightarrow CuBr(c) + \frac{1}{2}Br_2(g) + 2L(g)$$
(4)

EXPERIMENTAL

The complexes were prepared by the addition of alcoholic solutions of ligand and metal halide and purity was established by microanalysis for C, H and N. The Perkin-Elmer differential scanning calorimeter (DSC-1) was used to measure the enthalpies of thermal decompositions in a nitrogen atmosphere, by a method referred to previously². The scan rate was 16 K min⁻¹ in all cases and the sensitivity was 2, 4, or 8 mcal (full scale deflection)⁻¹ sec⁻¹. The instrument was calibrated by use of the enthalpy of fusion of indium (0.78 kcal mol⁻¹), and checked as before³. Enthalpies of sublimation were obtained by use of a DuPont thermal analyser according to Ashcroft's⁴ method. Specific heat data were obtained by use of the differential scanning calorimeter according to the method described by O'Neill⁵.

RESULTS

Enthalpies of the stepwise and overall decomposition reactions are shown in Tables 1 and 2, respectively. The symbols T_i , T_p , and T_f refer to the initial, peak (where the rate of ΔH change was greatest), and final temperatures of the dissociation reaction, respectively, and T_m is the mean of the T_p values of the two successive reactions. In all cases the ΔH values, which refer to the temperatures T_p or T_m , are the mean of at least five experiments and the associated uncertainties are standard deviations of the mean values.

1	ABLE	I

ENTHALPIES OF STEPWISE DECOMPOSITION OF MX2L2

Complex	Reaction	ΔH	$T_1(K)$	$T_{p}(K)$	$T_{f}(K)$	Weight loss (%)	
		(kcal mol ⁻¹)				obs.	calc.
MnCl ₂ (3Clpy) ₂	(2) (3)	16.0±0.2 16.3±0.3	440 515	485 570	500 585	32.9±0.3	32.17
MnCl ₂ (3Brpy) ₂	(2) (3)	15.8±0.3 16.5±0.3	435 525	485 585	500 595	35.9±0.6	35.76
MnCl ₂ (2Clpy) ₂	(2) (3)	15.6±0.4 17.5±0.4	455 510	490 565	510 575	33.0 ± 1.0	32.17
NiCl ₂ (3Clpy) ₂	(2) (3)	15.5±0.2 18.5±0.4	465 545	520 600	530 610	33.3±0.2	31.82
NiCl ₂ (3Brpy) ₂	(2) (3)	15.4±0.2 19.8±0.3	495 566	540 610	560 620	36.9 ± 0.4	35.46
CuCl ₂ (3Clpy) ₂	(2) (3)	16.2±0.2 16.7±0.5	435 510	500 575	510 580	37.8±1.8	32.41
CuBr ₂ (3Clpy) ₂	(4)	42.9 ± 0.5	450	520	535	67.9±0.6	68.15
CuCl ₂ (3Brpy) ₂	(2) (3)	16.2±0.2 18.8±0.2	450 530	520 595	530 605	39.0±1.1	35.07

Complex	Reaction	ΔH (kcal mol ⁻¹)	T ₁ (K)	$T_{p}(K)$	T _f (K)	Weight loss (%)	
						obs.	calc.
CuBr ₂ (3Brpy) ₂	(4)	40.9 ±1.2	465	540	560	72.5±0.1	73.40
CuCl ₂ (2Clpy) ₂	(2) (3)	14.0±0.2 13.7±0.4	370 430	420 490	430 500	31.6±0.2	31.39
CuCl ₂ (2Brpy) ₂	(1)	25.3±0.5	335 380 435 465	355 430 455 495	365ª 435 465 505	70.8±0.2	70.14
CuBr ₂ (2Brpy) ₂	(4)	30.4 ± 0.2	395	470	505	74.0 ± 0.1	73.40
CuCl ₂ (2MeOpy) ₂	(2) (3)	14.5±0.1 15.4±0.3	370 435	425 485	435 505	34.1 ± 0.2	30.94
CdCl ₂ (3Clpy) ₂	(2) (3)	14.6±0.2 16.6±0.1	425 490	475 550	485 560	29.1 ± 1.5	27.61

TABLE 1 (continued)

• First peak corresponds to a weight loss of $2.9 \pm 0.6\%$ and $\Delta H = 0.6 \pm 0.1$ kcal mol⁻¹, due probably to loss of solvent impurity; the following three peaks were too close to allow stoichiometry of reactions to be established.

TABLE 2

ENTHALPIES OF OVERALL DECOMPOSITION REACTION (1) $MX_{2}L_{2}(c) \rightarrow MX_{2}(c)+2L(g)$

Complex	ΔH (kcal mol ⁻¹)	$T_m(K)$	Weight loss (%)		
			obs.	calc.	
MnCl ₂ (3Clpy) ₂	32.3±0.5	530	63.8±0.4	64.34	
MnCl ₂ (3Brpy) ₂	32.3 ± 0.6	535	72.1 ± 0.2	71.53	
MnCl ₂ (2Clpy) ₂	33.1 ± 0.8	530	33.0 ± 0.7	32.20	
NiCl ₂ (3Clpy) ₂	34.0±0.6	560	63.4±0.5	63.64	
NiCl ₂ (3Brpy) ₂	35.2±0.5	575	71.0 ± 0.1	70.92	
CuCl ₂ (3Clpy) ₂	32.9±0.7	540	64.4 ± 0.2	62.81	
CuBr ₂ (3Clpy) ₂	34.0±0.5*	540			
CuCl ₂ (3Brpy) ₂	35.0 ± 0.4	560	70.9 ± 0.4	70.14	
CuBr ₂ (3Brpy) ₂	32.0±1.2ª	540			
$CuCl_2(2Clpy)_2$	27.7±0.6	455	62.1 ± 0.7	62.79	
CuCl ₂ (2Brpy) ₂	25.3 ± 0.5	460	70.8 ± 0.2	70.14	
CuBr ₂ (2Brpy) ₂	21.5±0.2*	470			
CuCl ₂ (2MeOpy) ₂	29.9 ± 0.4	455	62.0 ± 0.3	61.89	
CdCl ₂ (3Clpy) ₂	31.2 ± 0.3	515	55.4 ± 0.1	55.33	

* Calculated from $\Delta H(4)$ using the ΔH_{f}^{\bullet} values⁶ CuBr₂(c), -33.9 and CuBr(c), -25.0 kcal mol⁻¹.

It has been possible to determine enthalpies of sublimation of three of these complexes over the temperature ranges indicated, as follows. NiCl₂(3Clpy)₂ 17.2 \pm 1.7 (355–385 K), NiCl₂(3Brpy)₂ 18.2 \pm 1.2 (374–403 K), and CuCl₂(3Brpy)₂ 13.6 \pm 1.3 kcal

210

mol⁻¹ (360-390 K). Assuming that these enthalpies are close to those at 298 K and that they refer to monomeric species in the gas phase, and taking the enthalpies of sublimation⁷, NiCl₂ 58.7±1.0 kcal mol⁻¹ and CuCl₂ 47±1 kcal mol⁻¹, we obtain the following mean bond dissociation energies: \overline{D} (Ni-N) = 37.8±1.6 kcal mol⁻¹ in NiCl₂(3Clpy)₂; \overline{D} (Ni-N) = 37.9±1.3 kcal mol⁻¹ in NiCl₂(3Brpy)₂; and \overline{D} (Cu-N) = 34.2±1.3 kcal mol⁻¹ in CuCl₂(3Brpy)₂. Thus for the series of 3-bromopyridine complexes, CoCl₂(3Brpy)₂, NiCl₂(3Brpy)₂ and CuCl₂(3Brpy)₂, the values of \overline{D} (Metal-N) are 34.9±0.8, 37.9±1.3 and 34.2±1.3 kcal mol⁻¹. The trend of these values is that which is expected for these metals. Further analysis of the enthalpies of the overall decomposition reaction (1), given in Table 2, must await measurement of the enthalpies of sublimation of the remaining complexes.

REFERENCES

- 1 C. T. Mortimer and Janice L. McNaughton, Thermochim. Acta, 10 (1974) 125.
- 2 G. Beech, C. T. Mortimer and E. G. Tyler, J. Chem. Soc. (A), (1967) 925.
- 3 C. T. Mortimer and Janice L. McNaughton, Thermochim. Acta, 6 (1973) 269.
- 4 S. J. Ashcroft, Thermochim. Acta, 2 (1971) 512.
- 5 M. J. C'Neill, Anal. Chem., 36 (1964) 1238.
- 6 D. D. Wagman, W. H. Evans, V. B. Parker, I. Harlow, S. M. Bailey and R. H. Schumm, Nat. Bur. Stand. Tech. Note 270-4, (1969).
- 7 L. Brewer, G. R. Somayajulu and E. Brackett, J. Amer. Chem. Soc., 63 (1963) 111.