DERIVATOGRAPHISCHE UNTERSUCHUNGEN ÜBER DIE THERMISCHE ZERSETZUNG VON PYRIDIN, ISOCHINOLIN, α,α-DIPYRIDYL UND σ-PHENANTROLIN, BZW. BICHROMAT-ODER CHROMAT-ION ENTHALTENDEN METALLKOMPLEXEN

II. ZINK(II)-, CADMIUM(II)- UND MANGAN(II)-KOMPLEXE

III. QUECKSILBER(I UND II)-, URANYL-, THORIUM-, LANTHAN-UND EISEN-KOMPLEXE

BÉLA LÓRÁNT

Institut für Lebensmittelkontrolle und Chemie der Haupstadt Budapest (Ungarn) (Eingegangen am 11. September 1973)

ABSTRACT

Complexes were prepared of zinc(II), cadmium(II), manganese(II) mercury (I and II), uranium, thorium(IV), lanthanum and iron ions with pyridine, isoquinoline, α,α -dipyridyl, or α -phenanthroline ligands and bichromate or chromate ions as described on pp. 205–207 of Ref. 1.

ZUSAMMENFASSUNG

- (1) Wie bei den Cu(II), Ni(II) und Co(II) Komplexen, steigen die Anfangstemperaturen der Zersetzungen von den Pyridinkomplexen an bis zu den Phenantrolinkomplexen. Die niedrigsten Temperaturen liegen um 100°C, oder noch höher, die höchsten über 200°C, teilweise aber niedriger. Eine Differenz bedeutet, dass von den schon mitgeteilten Metallionen alle Komplexe herstellbar waren, von den jetzt publizierten nur bestimmte.
- (2) Die Zersetzungen erfolgten im allgemeinen in zwei, aber zuweilen in einer Stufe.
- (3) Auch zwischen den Zinkkomplexen fand man solche, in welchen Base statt Kristallwasser im Kristallgitter existierte.
- (4) Die Endprodukte waren, neben dem Chrom(III) oxyd, die entsprechenden Metalloxyde, oder wenn die Aufheizung ungenügend war die entsprechenden Chromate. Bei den Quecksilberkomplexen wurden die Oxyde vollkommen entfernt. Einige Komplexe zersetzten sich explosiv.
- (5) Die Formel waren, wie im Teil I erwähnt wurde, kontrolliert. Mehrere Komplexe waren kristallwasserhaltig. Die Verwendbarkeit zum analytischen Zweck ist gleich die der schon erwähnten Komplexen.

TABELLE 1 ZERSETZUNGSDATEN DER Zn, Cd UND Mn KOMPLEXE

Formel	Farbe	Zerset	Zersetzung ("C)	Gewichts-	/S-	Ende der	Getolchis-	its-	Spitzen der DTA	Gewichtsverlust	1131
		Antimo	Finda	(0/) (20)	(0/)	- photo (°C)	007.11631	(/ a)	Kurie I	(%)	tennidu:
		annous .	Tallac	Ber.	Gef.	(2) 3000	Ber.	Gef.	(2,)	(6)	
Zn(Pyr),Cr,O,	orangengelb	100	175	26,5		240	53,0	57,5	300		
Zn(Iso), Cr2O, (Iso)	orangengelb	105	240 41,8	41,8	42,5	320	55,7	29,7	240, 360		
Zn(Dip)2Cr2O7.2H2O	orangengelb	270	boi 325 °C	: Explosic	Ξ	470			410		
Zn(Phon)2Cr2O7	orangengelb	265		,		420	56,2	57,3	370	bei 325 °C 8,1	,1 6,6
Zn(Iso),(CrO4), 4H,0	golb	18				470	41,0	40,0	355		
Zn(Dip),(CrO4), 4H,O	gelb	250				420	56,4	55,7	395		
Zn(Phen)CrO4	golb	250				390	20,0	48,4	360	bel 250°C 5,	5,33 5,0
Cd(Pyr),Cr,O,	orungengelb	110	190	24,5	26,7	265	49,0	48,7	195, 285		
Cd(Iso),Cr,O,	orangengelb	6	235	30,5	31,2	310	1,19	61,7	335		
Cd(Dip),Cr,O,	orangengelb	175				320	48,8	45,6	330		
Cd(Phon), Cr,O,	orangengelb	275	345	26,15	27,0	425	52,3	53,0	330		
Cd(Dip)(CrO), 2H,0	qlog	180				355	29,1	31,4	330		
Cd(Phon),(CrO4)·5H,O	gelb	155				423	45,3	44,5	375		
Mn(Iso),Cr2O,	rotlich braun	120	215	49,2	47,8	310	8,69	65,5	325		
Mn(Dip), Cr, 0,	rotlich braun	235				320	53,6	53,5	315		
Mn(Phen),Cr,O,	rötlich braun	255	345	28,55	27,1	430	57,1	57,8	350	bei 8,	8,24 8,1
Mn(Dip)2(CrO4)2.4H2O	braun	185				365	46,5	43,7	315, 330		
Mn(Phen),(CrO4),	braun	245				350	58,2	2'09	325		

1. Zinkkomplexe

Ihre Farben, Formel und die wichtigsten Zersetzungsdaten wurden in der Tabelle I zusammengestellt, nach diesen sind die Zinkkomplexe bis zu 100°C, eventuell auch über 100°C stabil, bzw. zersetzen sich im allgemeinen in zwei Phasen. Auch dieser Dichromat-Isochinolin-Komplex enthält ein dem Kristallwasser ähnliches Isochinolinmolekül in seinem Kristallgitter. Die DTA Kurven sind einspitzig, auch bei den Chromatkomplexen, welche aber doch nicht nadelförmig sind, wie bei den Bichromatkomplexen.

Die Endprodukte waren die Metallsalze des entsprechenden Anions, in meisten Fällen enthielt man aber weitere Zersetzungsprodukte, wie z.B.

$$Zn(Pyridin)_4Cr_2O_7 \rightarrow ZnCr_2O_7 \rightarrow ZnCr_2O_4$$

$$Zn(Isochinolin)_2(CrO_4)_2 \rightarrow ZnCrO_4 + (CrO_4)^{2-} \rightarrow ZnCrO_4 + 1/2Cr_2O_3$$
.

Dem Pyridinkomplex ähnlich zersetzte sich auch der o-Phenantrolinkomplex. Die Dipyridylkomplexe explodierten bei 325 bzw. 320°C.

Die Niederschläge entstanden plötzlich nur von konzentrierteren Lösungen, sonst nach längerem Stehen. Das Pyridin-Chromat-Komplex war nicht erhaltbar, statt dieses entstand das Zinkchromat. Die Phenantrolinkomplexe gangen — wie schon andere untersuchten — während ihrer Aufheizung in den Dipyridylkomplex über.

2. Cadmiumkomplexe

Dem Zinkkomplex ähnlich existiert auch das Cadmium-Pyridin-Chromat-Komplex nicht, sogar erhielt man das Cadmiumchromat auch im Falle des erwarteten Isochinolinkomplexes. Der Isochinolin-Bichromat-Komplex enthielt statt Kristall-wasser im Kristallgitter kein Isochinolinmolekül. Die Zersetzungen waren ähnlich, wie bei Zinkkomplexen:

$$Cd(Pyridin)_4Cr_2O_7 \rightarrow CdCr_2O_7 \rightarrow CdCrO_4 + 1/2Cr_2O_3$$
.

Änhlicherweise zersetzen sich der Isochinolin- und Dipyridylkomplex.

$$Cd(Phenantrolin)_2Cr_2O_7 \rightarrow CdCr_2O_7$$

 $Cd(Dipyridyl)_2(CrO_4)_2 \rightarrow CdCrO_4 + 1/2Cr_2O_3$, ebenso der Phenantrolin-komplex.

Die Zersetzungsdaten, Formel, und die Farben wurden in der Tabelle 1 zusammengestellt. Im Gegenteil, wie bei den Zinkkomplexen, war die Fällung der Cadmiumkomplexe quantitativ, bzw. ihre Zersetzung zweiphasisch.

3. Mangankomplexe

Diese Komplexe wurden in kleinerer Zahl hergestellt, als die entsprechenden

TABELLE 2
ZERSETZUNGSDATEN DER QUECKSILBERKOMPLEXE

Formel	Farbe	Anfang der Zersetzung	Ende der ersten Phase	Gewichisverlust (%)	sverlust	Erhaltene Stoffe	Splizen der DTA Kurve
		(2.)	(2)	Ber.	Gef.		6
Mercurikomplexe	4100	2	, , , , , , , , , , , , , , , , , , ,	.	7	r Politica	3 00
n8(ry/)201201	Rein	255	265	33,9	36,3	+3 Pyridin	607
		265	415	76,8	73,7	+2 Hg	
		415	570	83,7	84,0	+4 Oxygen bis Cr2Os	٥٥١،
(Hg.Dlp), Cr.0,	gelblich braun	81	280	16,6	13,4	1 Dipyridyl	325
	•	280	380	76,7	75,3	+1 Dipyridyl	
		380	520	83,7	83,3	+2 I3g +4 O	
(Hg-Phen), Cr, O,	gelblich braun	100	365	6,77	81,5	2 Phenantrolin	310
	•	365	530	84,45	5 '98	+2 l4g +40	
Hg(Pyr),(CrO,),	orango	901	270	31,65	32,0	3 Pyridin	300
	ı	270	280	42,2	42.0	+ 1 Pyridin	
		280	340	0'69	9,79	+1 Hg	
		340	440	73,3	73,8	+20	
		440	545	7,67	81,3	+30	

Formel	Farbe	Anfang der Zersetzung	Ende der ersten Phase	Gewichtsverlust (%)	sverlust	Erhallene Stoffe	Splizen der DTA Kurve
	·	(2.)	(2)	Ber.	Gef.	-	(2)
Mercurokomplexe							
Hg(Pyr)2(CrO4)2	orange	130	27 <i>5</i> 330	26,8	28,1	2 Pyridin +1 Ha	300
		330	580	73,6	74,5	+5 0 bis Cr2O3	
Hg(Iso)2CrO4.H2O	orango	150	245	24,1	24,7	2 Isochinolin	345
		. 245 310	310 330	61,6 73,6	39,8 73,5	+2 lig +1 Isochinolin	
	-	330	387	92,9	93,5	+1 Isochinolin +2,5 O	
(Hg-Dip) ₂ (CrO ₄) ₂	orange	130	270	9'91	16,3	1 Dipyridyl	300, 310
		270	290	33,1	33,7	+1 Dipyridyl	
		290	305	54,2	57,0	+1 148	
		305	385	75,3	78,2	+1 118	
		385	520	83,8	82,3	+20	
(Hg-Phen) ₂ (CrO ₄) ₂	orango	100	280	18,1	15,8	1 Phonantrolin	310, 330
		280	355	9'92	90,6	+1 Phen. +2 HB	
		355	470	84,7	83,4	+20	

ZERSETZUNGSDATEN DER URANYL-, THORIUM-, LANTHAN- UND EISEN-KOMPLEXE

Formel	Farbe	Anfang der Zersetzung	Ende der ersten Phase	Gewichtsverlust (%)	verlust	Erhaltene Stoffe	Spitzen der DTA Kurve
		(ఫి.)	(೨.,)	Her.	Gef.		(5.)
A. Uranylkomplexe							
(UO ₂)(Pyr) ₂ Cr ₂ O ₇	gelblich orungo	100 240 390	240 390 555	12,25 24,5 1,24	10,6 28,9 1,62	1 Pyridin +1 Pyridin +0,5 O	325 Expl. bøí 300
(UO ₂)(Iso) ₁ Cr ₂ O ₇	golblich orango	555 640 110 410 640	640 950 410 640 730 950	2,48 3,72 34,7 2,15 1,07	2,46 4,28 33,2 2,55 1,00 2,43	+1 O +1,5 O 2 Isochinolin +1 O +0,5 O +1 O	355 Expl. bei 300
(UO ₁)(Dip) ₁ Cr ₂ O ₇	orango	200 350 410	350 410 640	14,15 24,3 3,0	15,9 30,7 3,0	1 Dipyridyl +1 Dipyridyl +1,5 O	350 Expl. boi 310
(UO ₂)(Phon) ₂ Cr ₂ O ₇	orango	140 445 580	445 580 635	42,6 1,9 0,9	44,6 1,3 1,0	2 Phenantrolin +1 O +0,5 O	360
(UO ₂)(Dip)CrO ₄ ·H ₂ O	gelb	95 200 520	140 410 720	2,87 27,85 1,44	2,8 27,9 1,76	1 H ₂ O +1 Dipyridyl +0,5 O	250, 385
(UO ₂) (Phen)CrO ₄	gelb	130 560	450 710	31,8	37,6 1,84	2 Phenantrolin +0,5 O	390

rormer	l'arbe	Anfang der Zersetzung	Ende der ersten Plase	Gewichtsverlust (%)	nerlust	Erhaltene Stoffe	Spltzen der DTA Kurve
		(3.)	(a)	Ber,	Gef.		(5)
B. Thorium, Lanthanum- und Eisenkemplexe	nd Eisenkomplexe						
Th(lso)Cr2O1.2H2O	orange	175 260 430 680	260 350 680 790	5,87 21,1 2,61 1,3	5,6 19,15 2,28 1,22	2 H ₂ O +1 Isochinolin +1 O +0,5 O	290
${\rm Th}({\rm Dip})_{0,s}{\rm Cr}_{z}{\rm O}_{\tau}$	orange	205 445	370 670	14,85	18,8 3,05	0,5 Dipyridyl + 1 O	
Th(Phen)o, sCr, O,	orange	061	360	16,7	22,8	0,5 Phenantrolin	Expl. bei 280
La ₂ (Dip)(Cr ₂ O ₇₎₂	oran ge	200 660 720	410 720 780	18,0 1,85 1,85	22,9 1,37 1,71	1 Dipyridyl + 1 O + 1 O	340
La(Phen) ₂ (Cr ₂ O ₇)	orungo	160 300 560	300 350 620	25,15 25,15 2,24	25,2 26,7 2,75	1 Phenantrolin +1 Phenantrolin +1 O	300 Expl. bei 290
Fe(Iso)Cr ₂ O ₇ Fe(Phen) ₂ Cr ₂ O ₇	rötlich braun	100 210 290	500 290 360 560	32,2 28,5 28,5 28,5	31,6 26,2 23,7	1 Isochinolin 1 Phenantrolin + 1 Phenantrolin	290 300 Expl. bei 260
l³e(Iso)CrO₄		130 320	320 390	25,6 25,6	27,2 29,0		310 Expl. bei 275

der schon erwähnten Metalle, so wurden der Pyridin-Bichromatkomplex, der Chromatkomplex des Pyridins und Isochinolins nicht erhalten. Auch ihre Farben waren abweichend, das Manganion beeinflusste diese und so entstanden ihre braunen, rötlichbraunen Farben. Ähnlich dem Cadmium-Isochinolin-Komplex fehlte auch hier von der Isochinolinverbindung das Basenmolekül statt des Kristallwassers im Kristallgitter. Die Zersetzungen liefen mit den entsprechenden Cadmiumkomplexen identisch ab.

Die Niederschläge konnte man teilweise plötzlich, teilweise nur nach einem stehen erhalten, quantitativ nur dann, wenn die Lösungen konzentrierter waren. Die Zersetzungen waren teilweise einphasisch, teilweise zweiphasisch, die entsprechenden Daten findet man in der Tabelle 1.

4. Quecksilberkomplexe

a. Mercurikomplexe (Bichromate)

Die Formel des Pyridin-Bichromat-Komplexes entsprach nicht der literarischen², da man bei der Zersetzung der dort publizierten, der Formel (Hg-(Pyridin)₂-Cr₂O₇) entsprechenden Verbindung bis zu Cr₂O₃ (auch die Quecksilberionen werden verdampft) einen 73,5%-igen Verlust erhalten würde, wir erhielten dagegen 84,0%, weswegen die in der Tabelle 2 existierende Formel annehmbar ist. Während der Zersetzung wurden die beiden Metallionen nach den Liganden entfernt. Endlich blieb — wie auch bei den anderen Quecksilberkomplexen — das Chrom(III)-oxydzurück.

Bei den anderen Komplexen wurden die Ionen und die Liganden gemischt abgespaltet. Statt des Isochinolinkomplexes schien uns dans Isochinolin-Chromat-Komplex zu erhalten. Mit dem Pyridin als Ligandum konnte man nur den Chromat-komplex herstellen.

b. Mercurokomplexe (Chromate)

Der Isochinolinkomplex war kristallwasserhaltend und enthielt nur ein Chromation, die anderen aber zwei. Das Endprodukt war in jedem Falle Cr_2O_3 .

Beide Komplexreihe schienen bis zu 100°C unverändert zu bleiben, dies kann man bei der Trocknung analytisch verwerten: die Komplexe sind bis zu dieser Temperatur trockenbar. Auf jede Zersetzung ist je eine exotherme Spitze charakteristisch, welche eventuell doppelt gebildet werden kann, sogar mit einem Inflexionspunkt. Die Zersetzungen waren mehrphasisch, da hier nicht nur die Liganden, sondern auch die Quecksilberionen entfernt werden. Die Zersetzungsdaten enthält die Tabelle 2.

5. Uranylkomplexe

Mit dem Bichromation konnte man den Pyridin-, Isochinolin-, Dipyridy!- und den Phenantrolin-Komplex herstellen, mit dem Chromation nur die zwei letzten. Von den Bichromatkomplexen war die Zersetzung des Pyridin-, Dipyridyl- und Phenanthrolin-Komplex zweiphasisch, bei dem Isochinolinkomplex einphasisch. Die

Endreaktionen waren von den bisherigen abweichend:

$$2(Cr_2O_7)^{2-} \rightarrow 2(CrO_4)^{2-} + Cr_2O_3 + 3O$$

$$2UO_2 + 2(CrO_4)^{2-} \rightarrow 2UO_3 + Cr_2O_3 + 3O.$$

Beim Phenantrolinkomplex konnte man die zweite Sauerstoffabspaltung nicht beobachten.

Von den Chromatkomplexen war die Dipyridylverbindung kristallwasserhaltend und beide wurden mit einem Ligandum erhalten. Der Dipyridylkomplex blieb zwischen 140 und 200°C, dann zwischen 410 und 520°C gewichtskonstant, und der Phenantrolinkomplex zwischen 450 und 560°C. Die Grenzen können analytisch verwendet werden. Die Tabelle 3A stellt uns die Zersetzungsdaten dar.

6. Thoriumkomplexe

Man konnte nur die Bichromatkomplexe herstellen, von diesen den Isochinolin-, Dipyridyl- und den Phenantrolin-Komplex. Der erste was kristallwasserhaltend, der Ligandengehalt war die Hälfte, als erwartet. Gewichtstabilität war bis zu 175°C beobachtbar. Die Zersetzungen waren einphasisch, siehe Tabelle 3B, die Fällungen plötzlich erhaltbar und quantitativ.

7. Lanthankomplexe

Den Thoriumkomplexen ähnlich konnte man nur die Bichromatkomplexe herstellen und nur mit den Dipyridyl-, bzw. Phenantrolinliganden. Sie waren bis zu 160, bzw. 200°C stabil. Der letzte enthält zwei Liganden, der erstere nur ein, die Zersetzungen waren dementsprechend ein-, bzw. zweiphasisch. Statt der anderen Komplexen erhielt man das Lanthanchromat (Tabelle 3B).

8. Eisenkomplexe

Mit dem Isochinolin und Phenantrolin als Ligandum konnte man die Bichromate, mit dem ersten auch den Chromatkomplex herstellen. Der erste zersetzt sich einphasisch, die anderen zweiphasisch, alle mit Explosion zwischen 260 und 275°C.

ENDRESULTAT

Es ist annehmbar, dass auch die dem Lanthan ähnlichen Metalle solche Komplexe zu bilden neigen. Analytisch können auch solche Fälle verwendet werden, wobei die verschiedenen Metalle nicht mit allen Basen Komplex bilden.

LITERATUR

- 1 B. Lôránt, Thermochim. Acta, 6 (1973) 205.
- 2 G. Spacu und L. Dick, Z. Anal. Chem., 76 (1929) 273,