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ABSTRACT

Some rzlations between lattice energies calculated from various simple
equations are pointed out. It is found that these equations give values of the variation
of compressibilitv with pressure that agree poorly with experiments, at least for
sodium and cesium chloride. bromide, and iodide. Equations which take this variation
into account are developed, and it is found that calculated values of the lattice energy
vary very little with the exact equation used. On the whole these extended equations
give better agreement between the calculated and observed lattice energies.

It has been common, since the problem was first formulated by Born!, to
suppose that the lattice energy of an ionic crystal is given by
—~NAé*z, . z_ )
E=-———_"""" 1 (repulsive energy)
r

where the first term represents the electrostatic attractions and repulsions of ions, and
the second arises from the repulsion of ions at short distances. N is Avogadro’s

number, A the Madelung constant, and r the distance between neighbouring ions of
charge +ez, and —ez_. At the equilibrium distance r =r_;, E becomes the latrice

waldli ot U IUIN WUiaild4alith 1al

energy U. Some what more sophisticated treatments contain other terms, particulariy
the Van der Waals attraction. These calculated values can be compared with experi-
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mental values, obtained indirectly by some thermodynamic cycle (the “Born~Haber”

- .- .
cycle), which involve the combination of a number of experimental results.

The repulsive energy is usually assumed to be given by some largely empirical

1 rpa—rlp
expression, particularly Bfr” or B'e (ref. 2). These contain two adjustable con-

stants, which are generally chosen to agree with the observed values of the equilibrium

dictance » and the comnreccibilityv
gistance, r., ang the compressiounty.

The first object of this paper is to point out that the lattice energies calculated
h

out Van der Waalg enerov) are necessarily

from these two exnressions (with or wit
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related to each other by certain simple equations; relations that have probably been
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noted before, but do not seem 1o have been commented on explicitly. As will be seen,
the difierences in lattice energy are sufficiently small to make choice, on th
expeniment, difficult.

Treatments of this type, with only two adjustable constants, only use the value
of the compressibility at low pressure. However, compressibility, in general, falls with
increasing pressure; and, at least for certain alkali halides, fairly extensive data on this
ex:st. Two approaches are possible: either the simple equations can be used to predict
the variation of compressibility with pressure, and the results compared with
experiment; or equations with more adjustable constants can be fitted to the com-
pressibilities observed. These will then give lattice energies which can be compared
with experiment. The second and main part of this paper will deal with these aspects

of the problem.
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DATA ON COMPRESSIBILITY

Data on the compressibility of the alkali halides bave beer collected in
Landolt-Bdrnstein? from various workers®. Unfortunately data on lithium halides
are inadequate, and potassium and rubidium chloride, bromide and iodide undergo a
phase change at moderately high pressures which limits the data applicable to the
present problem. In fact extensive data are only available for sodium and cesium
chloride, bromide and iodide, and the present paper will therefore deal with these
compounds.

For these compounds, values of —AV/V, (where Vj is the volume at zero
pressure) are available for pressures up to 100,000 atmospheres. Inspection of these
values suggested that they might reasonably fit an empirical equation for the com-
pressibility, f§, at constant 7-

This gives on integration

~di(f)—po+ B B
r4 2

P \Vy/

Values of —(1/P) In (V/V,) were calculated from the data for various values of P
(usually multiples of 10* atm, up to 10° atm), and the coefficients f,, §; and 8, were
obtained by the method of least squares. Table 1 gives these values, all at 20°C.

In calculating lattice energies, it is much more convenient to have the com-
pressibility expressed as a function of the volume. If V is not very different from V,,
this can be done by the empirical equation:

V-V, V—1¥,)\?

B= Yo-;-Y,( - )+ Yz( ” ) .

[+ o




The relations between the two sets of coefficients can easily be shown to be:

BOBI _Bflﬁo-zﬁz .

Yo =Po; Y1 = —F1/Bo; and Y,= 2
2B

Hence Table 1 also includes values of Y, and Y,.

TABLE 1
COEFFICIENTS FOR COMPRESSIBILITIES OF SOME ALKALI HALIDES

Pressures are in atmospheres.
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Compa!md IO‘ﬁo 10'2ﬁ1 Iolsﬂz 10° Yl 10° Yz

NaC! 4.133 —64.51 440.9 15.61 —11.47
NaBr 4.694 —66.64 347.7 14.20 —12.78
Nal 6.200 —108.89 7159 17.56 —14.65
CsCl 5.278 —79.98 415.9 15.15 —14.40
CsBr 5.808 —83.91 477.3 14.45 —11.04
GCsl 7.267 —133.50 886.4 18.37 —15.62

FUNCTIONS WITH TWO ADJUSTABLE CONSTANTS

When the function for the repulsive part of the energy contains two adjustable
constants, it is vsual to fit these to give the correct distance at the minimum energy,
and the compressibility at low pressure. In a plot of E against r, this fix2s the minimum
or the correct place on the r axis, and gives the correct radius of curvature at that
minimum. This radius of curvature is given by (d2 E/dr?)~ !, which equals ,/9 CNr,,
where C is a numerical factor, depending on the lattice, such that the molar volume

equals CNr2.
It is useful here to introduce two quantities, M and Q, defined by:

9CNr; 9V,r.
Bo Bo
Then if the repulsive energy is f, so that

M =NA4e*z,z_ and 0=

Ee M.,
r

and if fo, fo. fo- €tc. indicate the values at r =r_ of f, dfJdr, d2f/dr2, etc., then

fo=~—-M[rl and fj=(Q+2M)rl.

M can be calculated, and Q can be found from experimental data, and hence the two
adjustable constants are found from these two equations. If we apply this to the

commonly used forms for the repulsive energy, we get the following.
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{{) Born equation
Here f= Bfr*, and this gives

n=1+0/M.

As is well known, the lattice energy is

U1=_ﬂ<1_l)=__ﬂ1< Q )
r. n r. \Q+M

(2) Born-Mayer equation
Here f= B’e”"/?, and this gives

rdp=2+Q/M=n+1.

The lattice energy is

M P M[{O+M
Up=——f|l——})= —~— .
r. r, re \Q+2M
Hence the ratio U(Born)/U(Born-Mayer) is 1 —1/n>, where U(Born} is invariably a

smaller (absolute) quantity. As 7 is in general between 6 and 12, the difference is
0.7 to 2.8%.

(3) Born equation with Van der Waals term
Here we take

with B” and q as the adjustable constants. C’ is assumed to be known, and values are
found in the literature, for instance by Mayer?®. If we write D = C’/r2, we find

_ O+M+36D
M+6D
and the lattice energy is
D9
O+ +25D

M
U3 -
r.l Q+M+36D

Compounds with the NaCl structure have M =242787 x10™% Jm; for the CsClI
structure, M =2.44886x10”* Jm. Values of Q and D for the compounds being
considered are given in Table 2. With these values of Q and D, the lattice energy is a
larger (absolute) quantity than on the simple Born equation, but the difference
ranges from only 0.15% for NaCl up to 1.85% for CslL.
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TABLE 2
VALUES OF Q AND D FOR SOME ALKALI HALIDES

Compound 10*3x Q (Im) 10¥S x D (Jm)
NacCl 1.667 6.144

NaBr 1.848 6.933

Nal 1.931 8.244

CsCl 2.574 16.11

CsBr 2.767 17.67

Csl 2.833 18.60

(4) Born—-Mayer equation with Van der Waals term
Here we take
M C
E=————
r r

+ B"e""°

with B™ and ¢ as adjustable constants. The same treatment gives

r._Q+2M+42D
G M+6D

and the lattice energy is

6 D*?
M

o
- M Q+1W+D(M+32 +

re Q+2M+42D

Again the lattice energy is a larger quantity than for the simple Born—-Mayer equation,
and the difference ranges from 0.5% for NaCl to 2.5% for Csl.

The object of this part of the paper has been to point out the relations between
the lattice energies calculated from various equations. The actual numerical values are
collected in Table 3, and also experimental values from the Born—Haber cycle, using
data collected by Dasent®. As might be expected the calculated values are not very
different, and whether they are different enough to make an unambiguous choice of

TABLE 3

COMPARISON OF LATTICE ENERGIES (kJ mole~ ') CALCULATED BY VARICUS
EQUATIONS

Compound Egn () Egn (2) Egn (3) Egn (%) Observed
NacCl —753.1 —765.4 —754.2 —769.3 —783
NaBr —719.9 —729.7 —721.8 —734.3 —747
Nal —667.5 —675.9 —669.9 —681.3 —698.5
CsCl —628.6 —632.9 —637.1 —645.5 —654.5
CsBr —605.9 —609.9 —616.2 —624.2 —631.5

GCsl —570.6 —574.3 —581.2 —588.6 —597
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equation is somewhat a matter of judgement. Probably we should restrict our choice
between eqns (3) and (4), since inclusion of the Van der Waals term is certainly valid,
and eqn (4) is always somewhat better.

CALCULATION OF HIGHER TERMS IN THE COMPRESSIBILITY

Since the lattice energy itself does not give a very clear basis for choice between
these equations, it was thought that calculation of the higher cocfficients in the
expression for the compressibility, B, and B, above, might possibly do so. Since

d?EidV:=1/BV,

it can be shcewn that, at r=r,

*E _2TCN(Bo— 27CN(B5
TE_2TCNGBo—¥y) _ ZTCNWot B 4ng g*Ejar* = 18CNF/B3.
dr Bo Bo

9p7 27 9
where F = B2+9Y7—9B, Y, —9F,Y> = B5 + ﬂf + By + Bz.

2P5 2 Bo
Hence B, and B. can be calculated. This assumes that E is given (as above) by some
equation containing two adjustable constants, which are fitted to the values of §, and
Ie-

If we use the same equations as before, we get the following.

{(I) Born equation

2 Q+8M) 3(Q+16M
= — and 9 = -_—].
B Bo( I B.=Bo oM

(2) Born equation with Van der Waals term

[ 0%+ +6D —25A
ﬁx=—B5[Q +8QM+6D(180-25M)] .
3Q(M+6D)
0>M+160M2—D(9 Q2 —4020M +525M%) +
8, = B2 +D2(486Q+3600M—11250MZ/Q)]_
B 9Q(M+6D)y

(3) Born-Mcyer equation

‘0*+7TO0M -2 M?
g = 532 fQM_ )and

P =ﬁ3(Q3+28Q2M—-6QM2—4M3)
2 180°M
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(4) Born—-Mayer equation with Van der Waals term

2 2 2
B, = _ﬁg[Q +7OM—2M +102D(Q—-2M)—252D] and
3Q(M+6D)

(03M1+280° M2 _60M>—4M*—6D(40°—1260>* M +
+2480M?* + 136 M>)+(6 D)*(23 0* 4+ 1470QM — 1184 M*) +

+(6D)3 (140 — 476 M)—(6D)*49 |~
i 18 Q*(M +6 D)*

Bz=ﬂg

-

If the values of @, M and D, used earlier, are substituted into these equations, we get
the results in Table 4. In general the agreement of observed and calculated values is
not good. Over the range of the observations (up to 10° atm), the agreement of the
calculated AV/V,, or of B, with experiment 1s poor in all cases. Relatively, eqn (4)
above (Born—-Mayer with Van der Waals term) is most often the best, but not
invariably so. Even this equation gives values of B, and B, which agree poorly with
experiment.

TABLE 4
COMPARISON OF CALCULATED AND OBSERVED VALUES OF 8, AND §.

Pressures are in atmospheres.

Compound Eqn (D) Egqn (2) Eqn (3) Egn (4) Obserrved

Values of —10'2 8,

NacCl 84.6 84.2 77.3 77.5 64.5
NaBr 114.7 113.7 i05.4 103.3 66.6
Nal 204.4 202.0 188.4 183.7 108.9
CsCl1 171.9 164.3 160.8 150.8 80.0
CsBr 217.0 205.1 203.8 188.8 83.9
Csl 3244 3239 323.8 298.4 133.5
Values of 10*8 8,

NaCl 179 178 133 128 441
NaBr 271 266 200 192 348
Nal 634 618 465 446 716
CsCl 433 391 310 272 416
CsBr 594 523 422 363 477
Csl 1175 1023 832 709 886

Two minor points may be made. It may be thought that an exponential
form for the variation of f§ with P would be better. This is equivalent to wriiing
B = Boc?*F/?°, and requiring that (to a first approximation) 8, = 82/28,. Hence this
equation offers no better basis of comparison with experiment. The second minor point
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is that = Bo+f, P+, P> apparently gives a minimum in f# at about 70,000 to
80,000 atm, which is somewhat unexpected. This is in part the result of only taking
three adjustable constants, 4, ff; and fi,; but, with this number of constants, the
quoted values of these constants give the best fit with experiment. In fact the observed
values of AV/V,, fit those calculated from B8 = 8o+, P+, P> very adequately.

EQUATIONS WITH MORE ADJUSTABLE CONSTANTS

A more plausible approach to the problem is to choose a function for the
repulsive energy containing four adjustable constants, and to fit these to the observed
values of B,, B,, B~ and r_. This leaves considerable latitude in the choice of the form
of this funciion, and the forms selected below are obviously somewhat arbitrary.
What has been done is to derive equations which ensure agreement with the observed
Bo. By: B> and r_, and thence to calculate the lattice energy. The object of this is to
see whether the lattice energies differ appreciably from those calculated earlier, and
whether any particular expression gives a generally good agreement with experiment.

The equations for E that were investigated, and the methods of applying them
were as follows. They are numbered eqn. (5) onwards, to follow on the four equations
used above.

Eguation 5
M C —
= ——— 6+(B+GT-:-Hr e
r r -
wwhara £7726 Co Tt W Jae W Te tar o T el o T a LT s o D & P I
nere C'/r® is the Yan der Waals term, and the adjustable constants are B, G, H and p.

Equation 7

where «r was some arbitrarily selected small integer, and B, G, H and »n are adjustable
constants.

Eguaticn 5
If we successively differentiate this equation up to d* E/dr*, and put r=r,, we
t

~
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pu—v—2m = Xe¥
pu—2vu—4nu+2n = Ye*

pu? —3vur —6nu? +6nu = Ze*
P —4vy =8 +12nu? = We*

where

=

= e[p
g =Bu+Gr.u+Hrlu

v =Gr,
n = Hr?
D
x _M=x6D
re
y = 2M+42D+0
re
7z _SM+336D  27Vo(B5—Fy)
r. Ba
24M+3024D 9V,
W= +—3> 2B +9B1+27B5B1 + 1850 B2)

Te o
X, Y, Z and W can be found from experimental data. If we eliminate y, v and 7, we get
Xu?—-3Yu? +3Zu—W=0
which can be sclved to give u. The lattice energy is given by

+ D - D 3Xu*-3Y
U=_(y_f_g+gc,,=_(M+ )+(Xu 3 u+2)
r, u r. u

which can be evaluated, once u is known.
Eguation 6
Similar treatment of this equation gives
u+v+2a = Xe
pu+2vu+2v+4nu+6n = Ye*
pu* +3vu? +6vu+6v+-6mu’ +18nu+-247 = Ze®
p® +4vud +12vu? +24 vu+24 v+ 87w +36 tu? +96 tu + 120w = We®
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where we now define
i = Bu+ Gufr_+ Hu/r?
v = GJr,
== H/r?

and u, X, Y, Z and W are c fined as before.
Elimination of g, v and n gives

Xu®+(14X-3Y)u® +(18X-36 Y +3Z)u* +(204 X — 168 Y +30Z — W)u> +
+(264X 360 Y +108Z—-8 )12 +(144X—-360 Y +168Z— 18 W)u—
—144Y+96Z2—-121W =0.

This can be solved numerically for u. The lattice energy is given by

_QM+D) 33X +IutN-3Vu+2)+Z

U= -
r. u(u™+6u+6)

which can be evaluated as before.

Equation 7
Similar treatment of this equation gives

Il
N ~ X

f+v+n
n+Du+(n+w+Dv+@m+2ic+ D=

R+ +u+(n+w+r+u+ D v+ 2+ D +2w+2)x

(=D +2DR+pu+(n+u+Dn+uw+2)(n+w+3) v+

+(n+2u+DNn+2w+2)(n+2uw+3)x = W
where we now define

u= nB
re
v _(n+w)G
r:+=
__(n+2w)H
r:+2:

and X, Y, Z and I are defined as before.
Elimination of g, v and r gives

X3 +@BuX+3X-3Y)n* +QurX+6uX+3X—6wY—9Y+32Z)n+

2w’ X+ 3w X+ X2 Y—QwY—-TY+3uZ+6Z—W=0.
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This is easily solved numerically for n. The lattice energy is given by

_(M+D) N Gn?+6nw+3n+2u +3w+ DX —(n+w+1)3Y+Z
r. n(n+w)(n42w)

U=

which can be evaluated, once n is known. This was done for several, arbitrarily
selected but small, values of . :

The values of X, Y, Z and W, obtained from the experimental data are given in
Table 5. The values of u and of the lattice energy calculated from eqns (5) and (6) are
given in Table 6; the values of n and the lattice energy calculated from eqn (7) in
Table 7.

The first comment on these resuits is that the values of v or n are larger than
from the simpler eqns (1)}{(4). This has the effect of making the repulsive energy vary
more rapidly with distance; and hence its value at the equilibrium distance, when the
forces on the ions are balanced, is less than that calculated from any of the simpler
equations. This makes the calculated lattice energies more negative. Secondly there
is not much difference between the results of egns (5), (6) and any of the forms of
eqn (7). The calculated lattice energies are now all somewhat too high, and the best
fit is with eqn {7) ( = 4). In fact this equation gives the smallest deviation between

TABLE 5
VALUES OF X, Y, Z AND W FOR VARIOUS COMPOUNDS (kJ mole~!)

Compound X Y zZ w
NacCl 993.8 8565 61865 1513200
NaBr 954.0 8804 50337 1088900
Nal 904.5 8550 45943 904000
CsCl 959.5 10507 59918 1222200
CsBr 945.0 10770 53198 2926000
Csl 902.5 10389 52419 047800
L

TABLE 6

LATTICE ENERGIES CALCULATED FROM EQNS (5 AND (6)

Compound Eqgn (5) Egn (6)
74 U (kJ mole— 1) u U (kJ mole— 1)
NacCl 20.38 —792.9 18.46 —729.5
NaBr 22.96 —759.0 21.05 —760.7
Nal 23.71 —704.7 21.81 —704.4
CsCl 21.76 —668.6 25.84 —667.4
CsBr 29.60 —646.2 27.68 —646.1

Csl 29.88 —6094 27.96 —611.4
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TABLE 7
LATTICE ENERGIES (in kJ mole~ ') CALCULATED FROM EQN (M

Compound w=] r=2 w=4
n u n U n U

NaCl 19.29 —~788.3 18.39 —788.2 16.75 —787.7
NaBr 2200 —755.7 21.08 —755.6 19.41 —755.3
Nal 2277 —701.7 21.86 —701.7 20.18 —701.4
CsCl 26.84 —665.3 25.91 —665.3 24.19 —665.1
CsBr 28.70 —644.2 27.79 —644.2 26.00 —644.1
Csl 25.97 —607.5 27.64 —607.1 26.07 —607.1

calculated and observed lattice energies of any equation. Since eqm (7), as w is
increased, approximates more and more to eqn (3), it is probable that a value of w
could be found which gives good agreement with experiment, though it would be
fairly large (at least greater than 10, but varying for different compounds). Since there
is some uncertainty in the experimental values, this matter was not pursued in detail.
Figure 1 shows the values of E for sodium chloride in the neighbourhood of the
minimum, calculated from various equations. All equations necessarily have the same
values of d?E/dr? at the minimum, but eqns (5) and (7) have larger values of
d?E/dr® and d* E/dr*, which gives a faster rise as r decreases.

Fig. 1. Energy of sedium chloride at different interionic distances, calculated by various equations.

The conclusions to be drawn from this investigation are that equations which
take into account the observed variation of compressibility with pressure give
appreciably larger values of the lattice energy for the compounds considered, and on
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the whole give better agreement with values obtained from the Born-Haber cycle.
The exact form of thesc extended equations makes little difference. Presumably they
do reproduce the actual variation of energy with interionic distance more accurately.
It would seem that they offer a better, though more complicated, method of calculating
lattice energies.
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