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Some r’,:ations between lattice energies calculated from various simple 
equations are pointed out. It is found that these equations give values of the variation 
of compressibility with pressure that agree poorly with experiments, at least for 
sodium and cesium chIoride. bromide, and iodide. Equations which take this variation 
into account are developed, and it is found that calculated values of the lattice energy 
vary very little with the exact equation used. On the whole these extended equations 
give better agreement between the calculated and observed lattice energies. 

It has been common, since the problem was first formulated by Born’, to 
suppose that the lattice ener,v of an ionic crystal is given by 

E= 
-NAe’z+z_ 

f (repulsive energy) 
r 

where the first term represents the eIectrostatic attractions and repulsions of ions, and 
the second arises from the repuIsion of ions at short distances. N is Avogadro’s 
number, A the Madelung constant, and r the distance between neighbouring ions of 
charge +ez, and -ez_ . At the equilibrium distance r = r,, E becomes the lattice 
ener,T CT. Sometvhat more sophisticated trea?ments contain other terms, particularly 
the Van der Waals attraction. These calculated values can be compared with experi- 
mental values, obtained indirectly by some thermodynamic cycle (the “Born-Haber” 
cycIe), which involve the combination of a number of experimental results. 

The repulsive energy is usuaIIy assumed to be given by some largely empirical 
expression, particularfy B/r” or B’ewrfp (ref. 2). These contain two adjustabIe con- 
stants, which are generally chosen to agree with the observed values of the eq~uiiibrium 
distance, r,, and the compressibility. 

The first object of this paper is to point out that the Iattice energies calculated 
from these two expressions (with or without Van der Waals energy) are necessarily 
related to each other by certain simple equations; relations that have probably been 
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noted before, but do not seem to have been commented on explicitly. As will beseen, 

the differences in Iattice energy are sufIkientIy small to make choke, on the basis of 

experiment, difficult_ 

Treatments of this type, with only two adjustable constants, only use the value 
of the compressibility at low pressure. However, compressibility, in generaI, faIIs with 

increasing pressure; and, at least for certain alkali halides, fairly extensive data on this 

exist. Two approaches are possible: either the simple equations can be used to predict 

the variation of compressibility with pressure, and the results compared with 

experiment; or equations with more adjustabIe constants can be fitted to the com- 

pressibihties observed_ These will then give Iattice energies which can be compared 
with experiment. The second and main part of this paper wiI1 deal with these aspects 

of the problem. 

DATA OS COMPRESSIBILEY 

Data on the compressibility of the aIkaIi halides have been coliected in 
LandoIt-Emstein from various workersa_ C’nfortunateIy data on lithium haIides 
are inadequate, and potassium and rubidium chloride, bromide and iodide undergo a 

phase change at moderately high pressures which limits the data applicable to the 

present problem. In fact extensive data are only availabie for sodium and cesium 

chloride9 bromide and iodide, and the present paper wiII therefore deal with these 

compounds. 
For these compounds, vahxes of -A V/V, (where V, is the voIume at zero 

pressure) are avaiIabIe for pressures up to 100,000 atmospheres. Inspection of these 

vaIues suggested that they might reasonably fit an empirical equation for the com- 

pressibihty, /I, at constant T: 

This gives on integration 

VaIues of -(l,lP) In (V/V,,) were caIcuIated from the data for various values of P 
(usual!y muSpIes of lo4 atm, up to IO5 atm), and the coefficients /Ia, /Ii and /Ir were 

obtained by the method of least squares. Table I gives these values, all at 20°C. 

In caIcuIating lattice energies, it is much more convenient to have the com- 

pressibility expressed as a function of the volume_ If Y is not very different from V,, 

this can be done by the empirical equation: 
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The relations between the two sets of coefficients can easily be shown to be: 

Hence Table 1 also includes values of Y, and Y2. 

TABLE 1 

COEFFICIENTS FOR COMPRESSIBILITIES OF SOME ALKALI HALIDES 

Pressures are in atmospheres. 

NaC! 4.133 -64.51 440.9 15.61 -11.47 
NaBr 4.694 -66.64 347.7 14.20 - 12.78 
Nd 6.200 - 108.89 715.9 17.56 - 14.65 
Ccl 5.278 - 79.98 415.9 15.15 - 14.40 
CsBr 5.808 -83.91 477.3 14.45 -11.04 
CSI 7.267 - 133.50 886.4 18.37 - 15.62 

FUXCTIOSS WITH TWO ADJUSTABLE COKSTAN-IX 

When the function for the repulsive part of the enera contains two adjustable 
constants, it is usual to fit these to $ve the correct distance at the minimum energy, 
and the compressibihty at low pressure. In a plot of E against r, this fixes the minimum 
or the correct place on the r axis, and gives the correct rzdius of curvature at that 
minimum. This radius of curvature is given by (d2E/dr’)- ‘, which equals /JO/9 CNr,, 
where C is a numerical factor, depending on the lattice, such that the molar volume 
equals CNrz. 

It is useful here to introduce two quantities, M and Q, defined by: 

M= NAe’z,z_ and Q= 
9CNrz _ 9Vorc_ 

Bo PO 

Then if the repulsive energy is f, so that 

E= -%f 
r 

and iffo,&,f,, etc. indicate the values at r = r, off, dflnl; d2fjdr’, etc., then 

& = -M/r,’ and f; = (Q+ZM)/r,3. 

M can be calculated, and Q can be found from experimental data, and hence the two 
adjustable constants are found from these two equations. If we apply this to the 
commonly used forms for the repulsive energy, we get the following. 
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l(r) Born equafion 
Here f = B/r’, and _ti gives 

n= l+QjM. 

As is we11 known, the Iattice ener,9y is 

,(2) Born-Mayer equarion 
Here f = B’e-‘lp, and this gives 

The Iattice eneqg is 

Hence the ratio C’(Bom)/U(Bom-Mayer) is 1 - l/n’, where U(Born) is invariably a 
smaher (absolute) quantity. As n is in general between 6 and 12, the difference is 
0.7 to 2.8%. 

(3) Born equation zcith Van der WaaLs term 

Here u-e take 

with B” and q as the adjustable constants. C’ is assumed to be known, and values are 

found in the literature, for instance by Mayer’. If we write D = Cl/$, we find 

q _ Q+M+36D - 
M-l-6D 

and the lattice ener,gy is 

Compounds with the NaCI structure have M = 2.42787 x 10S4 Jm; for the CsCI 

structure, M = 2.41886 x IO-’ Jm. Values of Q and D for the compounds being 

considered are given in Table 2. With these vaIues of Q and D, the lattice ener,ey is a 

larger (absoiutej quantity than on the simple Born equation, but the difference 

ranges from only 0.15% for NaCI up to 1.85% for CsL 
‘Z . . 
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TABLE 2 

VALUES OF Q AND D FOR SOME ALKALI HALIDES 

Compound 1P3 x Q (Jm) IOt6xD (Jm) 

NaCl 1.667 6.144 
NaBr 1.848 6.933 
NaI 1.931 8.244 
Ccl 2.574 16.11 
CsBr 2.767 17.67 
Cd 2.833 18.60 

(4) Bona-Mayer equation zcith Van der WaaLs term 

Here we take 

E = - k! __c’ + Bme-‘f” 

r r6 
with B”’ and 0 as adjustabIe constants. The same treatment gives 

re Qt2M+42D 
-_= 
G M+6D 

and the lattice energy is 

Again the lattice energy is a larger quantity than for the simple Born-Mayer equation, 
and the difference ranges from 0.5% for NaCl to 2.5% for CsT. 

The object of this part of the paper has been to point out the relations between 
the lattice energies calcmated from various equations. The actual numerical values are 
collected in Table 3, and also experimental values from the Born-Haber cycle, using 
data collected by Dasent 6_ As might be expected the calculated values are not very 
different, and whether they are different enough to make an unambiguous choice of 

TABLE 3 

COMPARISON OF LAlTKE ENERGIES (kJmoIe-‘) CALCULATED BY VARKCUS 
EQUATIONS 

NaCl -753.1 - 765.4 - 7544.2 - 7693 -783 
NaBr -719.9 - 729.7 -721.8 - 734.3 - 747 
Nd - 667.5 - 675.9 - 669.9 -681.3 - 698.5 
CSCl - 628.6 -6339 -637.1 -ck%ss - 654.5 
CSBr - 605.9 - 609.9 -616.2 - 624.2 -631.5 
Cd - 570.6 - 574.3 -581.2 - 588.6 -597 
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equation is somewhat a matter of judgement. Probably we shouId restrict our choice 
between eqns (3) and (4), since inch&on of the Van der Waak term is certainIy vahd, 
and eqn (4) is always somewhat better. 

CALCUWTION OF HIGHER TERMS tX THE COMPRESSIBILITY 

Since the lattice energy itself does not give a very clear basis for choice between 

these equations, it was thought that calculation of the higher coefhcients in the 
expression for the compressibility, fll and fiz above, might possibly do so. Since 

d’Ei:d~’ = I/BY, 

it can be shcwn that, at r = re 

Hence PI and B2 can be calcuIated_ This assumes that E is given (as above) by some 
equation containing two adjustable constants. which are fitted to the values of PO and 

ir e- 
If we use the same equations as before, we get the following_ 

f(l) Born equalion 

,(2) Born eqzzalion zrilh Van akr Waals fenn 

flI = 
';SQhf t6 D(iSQ-25Af) and 

3Q(:Cf+6D) 1 

Bz = s: 

rM+l6QM=-D(9Q2-a2QM+525M2)+ 

-I- 0’(486Q+36OOAf - 1125OM*/Q) _ 

9Q(:M+6D)’ 1 
(3) Born-Mcyr qvation 
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(4) Born-Afayer equation zcith Van der Waals term 

B = +” Q2+7QM-2M2+102D(Q-2M)-252D2 
1 0 1 and 

3Q(M+6D) 

i92 =BZ 

‘Q3 M t28 Q2 M2 -6QM3-4MS--6D(4Q3-126Q2M+ 

+248QM2+1.36M3)+(6D)2(23Qt+147QM-f184,Clf)+ 

+(6D)3(14Q-476M)-(6D)449 

18Q2(M+6D)’ 

If the vaiues of Q, M and D, used earlier, are substituted into these equations, we get 

the results in Table 4. In general the agreement of observed and calculated values is 

not good. Over the range of the observations (up to 10’ atm), the agreement of the 

calculated AY/Y,, or of /I, with experiment is poor in all cases. Relatively, eqn (4) 

above (Born-Mayer with Van der Waals term) is most often the best, but not 

invariably so, Even this equation gives values of j3, and p2 which agree poorly with 

experiment. 

T.4BLE 4 

COMPARISON OF CALCULATED AlVD OBSERVED VALUES OF B1 AND b2 

Pressures are in atmospheres. 

Compound J%n (0 

VaIues0f---13~~~, 

Egn (2) Ew Q Eqn (4) Obserred 

NaCl 84.6 84.2 77-3 77.5 64s 
NaBr 114.7 113-7 iO5.4 103.3 66.6 
NaI 204.4 203-O 158.4 183.7 108.9 
CSCI 171.9 164.3 160.8 150.8 80.0 
CsBr 217.0 205. I 203.8 188.8 83.9 
CSI 3u.4 323-g 323.8 298.4 133.5 

NaCl 179 178 133 128 441 
NaBr 271 266 200 192 348 
NaI 634 618 465 446 716 
CSCI 433 391 310 272 416 
CSBr 594 523 422 363 477 
CSI 1175 1023 832 709 886 

Two minor points may be made. It may be thought that an exponential 

form for the variation of fi with P would be better. This is equivalent to writing 
fl= ~oe~lPfB”, and requiring that (to a first approximation) fit = f3:/2/3,_ Hence this 

equation offers no better basis of comparison with experiment. The second minor point 
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is that /I = & ipI PfpzP2 apparently gives a minimum in /3 at about 70,000 to 

SO,000 atm, which is somewhat unexpected_ This is in part the resuIt of only taking 
three adjustable constants, PO, fit and f12; but, with this number of constants, the 
quoted values of these constants give the best fit with experiment_ In fact the observed 

values of Al(jYo fit those calculated from /? = /lo +/?I P+fi,P’ very adequately. 

EQ~ATIO?S WITH MORE ADJlSi-ABLE COSZXAhTS 

A more pIausible approach to the problem is to choose a function for the 
repulsive ener_ey containin four adjustable constants, and to fit these to the observed 
value-s of &, , fiI ) p1 and r, _ This Ieaves considerabIe latitude in the choice of the form 

of this function, and the forms selected below are obviously somewhat arbitrary_ 

What has been done is to derive equations which ensure agreement with the observed 

&, , PI, & and r,, and thence to caIcuIate the lattice ener_q. The object of this is to 
see whether the lattice energia differ appreciably from those calculated earlier, and 

whether any particular expression gives a ,aenerally _good apeement with experiment. 

The equations for E that were investigated. and the methods of applying them 
were as follows. They are numbered eqn. (~3 onwards, to follow on the four equations 
used above. 

Equafion 5 

E= 
iv C’ _ _ _- + (B+Gr+ffr2)eer:p 
r r6 

where C’;i6 is the Van der Waals term, and the adjustable constants are B, G, Hand p. 

where B, G, H and p are adjustable constants_ 

Equarion 7 

where zc was some zubitrariiy sekcted small integer, and B, G, H and n are adjustable 
cons~rs_ 

Equalicn 5 
If we Successively difkrentiate this equation up to dqE[drq, and put r = r,, we 

get 
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p-v--23~ = Xe” 

pu-2su-4nut2~ = Ye” 

p2-3 1w”-66u~+6m.i = Ze” 

d -4vu3 -88uff12xu2 = We” 

where 

u = relP 

P = Bu+Gr,u-+Hr,Zu 

V = Gr, 

IL =Hrz 

X =M+6D 

r, 

Y 
= 2M+42DtQ 

r, 

z = 6hf+336D _ 27V,(~;-j3J 

r, BZ 

w _ 24Mt3024Dt 9V, - 

re 

X, Y, 2 and W can be found from experimental data. If we eliminate p, v and x, we get 

xu3 -3Yu2+3Zu-W=O 

which can be sc!ved to give u. The lattice ener_ey is given by 

u=- W+W i e e 
r, U 

-u = _ (M-tr3) + ~3Xu2~~Yu+z) 

r, 

which can be evaIuated, once u is known. 

Equation 6 

Similar treatment of this equation gives 

p-l-vf2n = Xen 

yuf2vu+-2vi4nu+6z = Ye” 

lur’+3r~2+6vu+6vf6~u2f18~u+24n = Ze” 

yu3+4vU3+12M12+24vu+24v+8xu3f365ru2+96nu+120x = We” 
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where we now define 

uld u, X, Y, 2 and 15’ are c -fined as before_ 

Elimination of p, v and x gives 

Xu6t(14X-3 Y)~‘f(7SX-36 Y+3Z)uJ+(204X-168 Y+3OZ- W)u3t 

+(264X--360 YtlOSZ-8 W’)U~ +-(144X-360 Y+I68Z- 18 tV)u- 

- 1M Yi96Z- 12 I+‘= 0. 

This can be solved numericaIly for u. The lattice ener~gy is given by 

U 
= _ (Jr tD) ~ 3X(u’+4zri2)--3 Y(n+2)+2 

r, u(u’+6ui6) 

which can be evsIuated as before. 

Equnlion 7 

Similar treatment of this equation gives 
pivt-x = x 

(n_tI)~-t(n~-f-~i)~~i(ni2icf1)5; = Y 

(n;:)(n;~~~~(n-tu?iI)(n+u-i2)r~i(n;2~+l)(n;2u:+2);r = z 

(n+l)(n+2)(ni3)p+(ni-zrtl)(n+rc-k2)(n;rc:+3)v+ 

+(n+2rc+l)(n+2~+2j(n+2~f3)n = CV 

where we now define 

3i= 
(n+Zrc)N 

c 
i2r 

and X, Y, 2 and W are defined as before. 

Efimination of p, Y and z gives 

Xn3 i-(32.~X+3X-3 Y)n’+(2 ~~X;6z&xt3X--6roY-9 Yt3Z)ni 

-+~zc~X;~ZCX+X-~~~;~ Y-9mY-7 Y+3zcZ+62- W=O. . 
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This is easily solved numerically for n. The lattice ener,3r is given by 

u= (M-i-D)+(3n2+6nw+3n+2w2+3w+l)X-(n+m+1)3Y+Z - 
re n(n+w)(n+2w) 

which can be evaluated, once n is known_ This was done for several, arbitrarily 
selected but small, values of w‘. 

4 
I 

The values of X, Y, 2 and W, obtained from the experimental data are given in 

Table 5. The values of u and of the lattice energy calcuIated from eqns (5) and (6) are 
given in Table 6; the values of n and the lattice energy calculated from eqn (7) in 

Table 7. 
The first comment on these results is that the values of u or n are larger than 

from the simpler eqns (I)-(4). This has the effect of making the repulsive enera vary 

more rapidly with distance; and hence its value at the equilibrium distance, when the 

forces on the ions are balanced, is less than that calculated from any of the simpler 

equations. This makes the calculated lattice energies more negative. Secondly there 

is not much difference between the results of eqns (S), {6) and any of the forms of 

eqn (7). The cAculateO lattice energies are now all somewhat too high, and the best 

fit is with eqn (7) (10 = 4). In fact this equation gives the smallest deviation between 

TABLE 5 

VALUES OF X, Y, Z AND W FOR VARIOUS COMPOUNDS (id mole- ‘) 

Compound X Y z W 

NaCi 993.8 8565 61865 1513200 
NaBr 954-O 8804 50337 1088900 
NaI 904.5 8550 45943 
CSCI 959.5 10507 59918 I222200 
CsBr 945.0 !07?0 53198 926000 
CSI 902.5 10389 52419 947@0 

K 

TABLE 6 

LAlTICE ENERGIES CALCULATED FROM EQNS (5) AND (6) 

Compound 

NaCl 
NaBr 
NaI 
CSCI 
CsBr 
Cd 

Eqn (5) 

u 

20.38 

22.96 
23.71 
27-76 
29350 
29.88 

U (k3 mole- ‘) 

- 792.9 

- 759.0 
- 704.7 
- 668-6 
-646-2 
-&I@_4 

Eqn (6) 

II 

18.46 

21.05 
21.81 
25.84 
27.68 
27.96 

U (kJ mole- ‘) 

- 729-5 

- 760.7 

- 704.4 
- 667.4 
-6461 
-611.4 
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TABLE 7 

L.4ITICE EXZRGIES (in kJ mole-‘) CALCULATED FROM EQN (7) 

Compound lC=i VT=.? w=4 

n u n u n u 

PzaCl 1929 - 788-3 18-39 - 7882 I G-75 - 787-7 
NaBr 2200 - 755.7 21.08 - 755.6 19.41 - 755.3 
xx.? 22-77 -701.7 21.56 -701.7 20.18 -701.4 
CsCl 26.~34 - 665.3 25-91 - 665.3 24.19 -665.1 
CSBr 2X70 - 644.2 27.79 -644_2 26.00 -644.1 
CSI 25.97 - 607.5 27.64 -607.1 26.07 - 607.1 

CalcxIated and observed lattice energies of any equation. Since eqn (7), as w is 

increased, approximates more and more to eqn (3), it is probable that a vaIue of w 

could be found which gives good agreement with experiment, though it would be 

fairly large (at Iezst greater than IO, but varying for different compounds). Since there 

is some uncertainty in the experimental values, this matter was not pursued in detaii. 

Figure I shows the values of E for sodium chloride in the neighbourhood of the 
minimum, caIcuIated from various equations. All equations necessarily have the same 

values of d*E&* at the minimum, but eqns (35) and (7) have Iarger vaIues of 

d3Ej’df3 and d’E,kirC, which gives a faster rise as r decreases. 

if3 
rrr 

e 

Fig. 1. Energy of &urn cbloddc at Werent interionic distances, calcuIatcd by various equations. 

The conclusions to be drawn from this investigation are that equations which 

take into account the observed variation of compressibility with pressure give 

appreciabIy Iarger values of the lattice energy for the compounds considered, and on 
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the whole give better agreement with values obtained from the Born-Haber cycle. 
The exact form of these extended equations makes little difference- Presumably they 
do reproduce the actual variation of ener,oy with interionic distance more accurarely. 
It would seem that they offer a better, though more complicated, method of calculating 
Iattice energies. 
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