IDEAL GAS STATE THERMODYNAMIC FUNCTIONS FOR A SERIES OF HALOGENATED PROPENES

J. LIELMEZS AND H. ALEMAN

Chemical Engineering Department, The University of British Columbia, Vancouver, B.C. (Canada) (Received 6 August 1974)

ABSTRACT

The thermodynamic functions, C_p° , S° , $-(F_0^{\circ}-H^{\circ})/T$ and $(H^{\circ}-H_0^{\circ})/T$ have been calculated in the ideal gas state at one atmosphere for the following halogenated propenes: *cis*-1-chloropropene; *trans*-1-chloropropene; *cis*-1-bromopropene; *trans*-1-chloropropene; *2*-bromopropene; *2*-iodopropene; *cis*-3-fluoropropene; gauche-3-fluoropropene; isomeric-3-fluoropropene mixture; *cis*-3-chloropropene; gauche-3-chloropropene; isomeric-2-chloropropene mixture; *cis*-3-bromopropene; gauche-3-bromopropene; isomeric-3-bromopropene mixture; *cis*-3-iodopropene; gauche-3-iodopropene and isomeric-3-iodopropene mixture. The agreement with other results, whenever available, is very good.

INTRODUCTION

The available spectroscopic and structural data for a series of halogenated propenes have made it possible to calculate the thermodynamic properties—heat capacity, entropy, enthalpy and free energy function for *cis*-1-chloropropene; *trans*-1-chloropropene; *cis*-1-bromopropene; *trans*-1-bromopropene; 2-fluoropropene; 2-chloropropene; 2-bromopropene; 2-iodopropene; *cis*-3-fluoropropene; gauche-3-fluoropropene; *cis*- and gauche-3-fluoropropene; *cis*-3-chloropropene; gauche-3-chloropropene; *cis*- and gauche-3-chloropropene; *cis*- and gauche-3-chloropropene; *cis*- and gauche-3-bromopropene; *cis*- and gauche-3-iodopropene; *cis*- and gauche-3

$$\Lambda = a + bT + cT^2 \tag{1}$$

where Λ is the thermodynamic function at temperature T(K). The constants a, b and c (eqn. (1)) were obtained using linear least squares curve fitting methods⁴ and are

HEAT CAPA	CITY, EN	TROPY, J	FREE ENE	RGY ANE	O ENTHAL	PY FUNC	TION					
Thermo- dynamic function	Temper- ature (K)	cis-1- Chloro- propene	trans-1- Chloro- propene	cis-1- Bromo- propene	trans-1- Bromo- propene	2-Fluoro- propene	2-Chloro- propene	2-Bromo- propene	2-lodo- propene	cis-3- Fluoro- propene	gauche-3- Fluoro- propene	Isomeric mixture of cis- and gauche-3- fluoro- propenes
Heat capacity C _p (cal mol ⁻¹ K ⁻¹)	298.15 298.15 500.00 600.00 700.00 800.00 900.00	16.19 20.60 24.40 27.57 30.22 34.36 34.36 35.99	17.24 21.37 24.97 28.01 30.56 32.73 34.59 36.19	16.42 20.84 24.60 27.74 30.35 32.56 34.45 36.07	17.94 21.99 25.47 28.40 30.88 32.99 34.80 36.36	18.27 22.30 25.69 28.54 30.95 33.01 34.79 36.34	18.74 22.82 26.22 28.99 31.35 33.37 35.11 36.62	19.23 23.19 26.49 29.23 31.55 33.55 33.53 35.74	19.40 23.30 26.55 31.60 33.58 35.29 36.78	16.76 21.15 25.00 28.23 30.93 33.21 33.21 33.15 38.81	16.80 21.12 28.20 30.90 33.19 35.14 36.80	16.80 24.94 28.17 28.17 20.88 33.16 35.11 36.78
Entropy, S° (e.u.)	298.15 400.00 500.00 600.00 700.00 800.00 900.00	70.22 75.60 80.62 85.36 89.31 94.00 97.93 101.64	69.74 75.39 80.55 85.38 89.89 94.12 98.09 98.09 101.82	72.79 78.24 83.31 88.08 92.56 96.76 100.70 104.42	72.55 78.39 83.68 88.59 93.17 97.43 101.42 105.17	68.79 74.73 80.08 85.03 89.61 93.88 97.87 101.62	70.84 76.93 82.39 87.43 92.08 96.40 100.43 104.21	73.71 79.93 85.47 90.55 95.23 99.58 103.63	75.59 81.85 87.41 92.50 97.19 101.54 105.60 109.39	67.92 73.46 83.46 83.46 88.02 92.30 96.33	69.10 74.65 79.79 84.63 89.19 93.47 97.49 101.28	70.88 76.46 81.62 86.48 91.04 95.32 99.35
Free energy function $-(F-H_0^{\circ})/T$ (cal mol $^{-1}$ K $^{-1}$	298.15 400.00 500.00 1 600.00 700.00 800.00 900.00 1000.00	58.89 62.47 65.59 68.50 71.22 73.81 76.27 78.63	57.93 61.67 64.93 64.93 67.95 70.76 73.42 75.95 78.35	61.46 65.04 68.19 71.11 73.85 76.45 78.93 81.29	60.33 64.19 67.57 70.67 73.56 78.86 81.30	56.62 60.49 63.88 67.00 67.00 72.64 75.23 77.68	58.49 62.42 65.88 69.06 72.02 74.80 77.42 79.92	60.96 65.01 68.57 71.81 74.82 77.65 80.31 82.84	62.64 66.75 70.33 73.61 76.65 79.49 82.17 84.71	56.39 60.04 63.24 66.21 69.00 71.65 74.17 76.58	57.32 61.03 64.28 67.27 70.08 72.74 75.27 75.27	58.51 62.38 65.72 68.78 68.78 71.63 74.33 76.89 79.33

TABLE 1

334

TABLE 1 (con	ntinued)											
Thermo- dynamic function	Temper- ature (K)	cis-1- Chloro- propene	trans-1- Chloro- propene	cis-1- Bromo- propene	trans-1- Bromo- propene	2-Fluoro- propene	2-Chloro- propene	2-Bromo- propene	2-lodo- propene	cis-3- Fluoro- propene	gauche-3 Fluoro- propene	 Isomeric mixture of cis- and gauche-3- fluoro- propenes
Enthalpy function $(H^\circ - H_0^\circ)/T$ (cal mol ⁻¹ K ⁻¹	298.15 298.15 400.00 500.00 700.00 800.00 900.00	11.33 13.13 15.03 16.86 18.59 20.19 21.66 23.01	11.81 13.72 15.62 17.43 19.13 20.70 23.47	11.33 13.20 15.12 16.97 18.11 20.31 20.31 23.13	12.22 14.20 16.11 17.92 19.61 21.14 21.14 23.87	12.17 14.24 16.20 18.03 19.70 21.24 23.94	12.35 14.51 16.51 18.37 20.06 21.60 23.01 24.29	12.75 14.92 16.90 18.74 20.41 21.93 24.58 24.58	12.95 15.10 17.08 18.89 20.54 22.05 23.43 24.68	11.53 13.42 15.36 17.25 19.01 20.65 22.16 23.54	11.77 13.62 15.51 17.36 19.11 20.73 22.23 23.60	12.37 14.09 15.90 17.70 19.41 20.99 23.81 23.81
Thermo- dynamic function	Temper- ature (K)	cis-3- Chloro- propene	gauché Chloro propei	-3- Iso - mix ne cis- gau chl	meric cture of . and tche-3- oro- penes	cis-3- Bromo- propene	gauche-3- 3-Bromo propene	Isomeric mixture of cis- and gauche-3- bromo- propenes	cis-3- , Iodo- propenu	gau lodc ? proj	сће-3- I)- оепе с й	someric iixture of is- and auche-3- ropenes
Heat capacity, C° (cal mol ^{- 1} K ^{- 1}	298.15 400.00 500.00 600.00 800.00 900.00 900.00	17.82 22.21 25.93 25.93 31.59 33.76 33.76 37.20	17.7; 22.05 25.8; 31.52 33.76 37.16		7.94 5.87 8.96 8.96 1.53 3.70 5.56 7.15	18.10 22.44 26.13 29.18 31.72 33.87 33.70 37.28	18.15 22.47 26.15 29.20 31.74 33.88 35.72 37.29	18.86 22.80 26.32 31.78 33.89 35.71 37.28	18.38 22.74 26.41 31.93 34.05 35.86 37.42	3 3 3 3 5 5 7 1	8.51 2.80 5.45 9.45 1.95 1.95 7.43 7.43	20.26 24.08 27.25 32.25 34.25 37.48 37.48
												fore of no mai

Thermo- dynamic function	Temper- ature (K)	cis-3- Chloro- propene	gauche-3- Chloro- propene	lsomeric mixture of cis- and gauche-3- chloro- propenes	cis-3- Bromo- propene	gauche-3- 3-Bromo propene	Isomeric mixture of cis- and gauche-3- bromo- propenes	cis-3- lodo- propene	gauche-3- Iodo- propene	Isomeric mixture of cis- and gauche-3- iodo- propenes
Entropy, S° (e.u.)	298.15 400.00 500.00 700.00 900.00 1000.00	71.43 77.29 82.66 87.66 92.34 92.34 96.70 100.79	72.43 78.26 83.60 88.59 93.25 97.61 101.69 105.52	74.15 80.07 85.46 90.48 95.15 99.51 103.60 107.44	74.22 80.16 85.57 90.62 95.31 99.69 103.79	75.20 81.15 86.57 91.62 96.31 100.70 104.80	76.57 82.76 88.29 93.39 98.12 106.64 110.50	75.67 81.69 87.17 92.26 96.99 101.40 105.51	77.01 83.06 83.55 93.65 93.65 98.38 102.79 106.91 110.77	77.15 83.83 89.69 95.00 99.87 104.36 108.53 112.44
Free energy function $-(F-H_0^0)/T$ (cal mol $^{-1}$ K $^{-1}$)	298.15 400.00 500.00 700.00 800.00 900.00 1000.00	59.19 63.06 66.45 69.57 72.50 77.86 80.35	60.08 63.98 67.37 70.50 73.42 76.18 78.79 81.27	60.89 65.03 68.58 71.82 77.63 80.30 82.82	61.73 65.68 69.12 75.29 75.25 78.03 83.17	62.57 66.55 70.02 76.18 76.18 81.61 84.13	62.82 67.12 70.81 77.24 80.13 85.43	63.06 67.05 73.73 76.72 76.72 82.20 84.72	64.16 68.21 71.74 74.97 77.98 80.81 83.48 86.02	63.48 67.83 71.62 75.09 78.28 84.06 86.71
Enthalpy function $(H^{\circ} - H_{0}^{\circ})/T$ (cal mol ⁻¹ K ⁻¹)	298.15 400.00 500.00 1 600.00 800.00 900.00 1000.00	12.23 14.22 16.20 19.84 21.45 22.92 24.27	12.35 14.28 16.23 19.83 21.44 22.90 24.25	13.26 15.04 16.88 18.66 21.88 21.88 23.30 24.61	12.49 14.48 16.45 18.33 20.06 23.12 24.46	12.63 14.60 16.55 18.41 20.14 21.73 23.18 23.18 24.52	13.75 15.64 17.48 19.24 22.88 22.40 23.79 25.07	12.60 14.64 16.64 18.53 21.86 23.32 24.65	12.85 14.85 16.82 18.68 20.40 21.98 23.43 24.75	13.67 16.00 18.07 19.92 21.58 23.09 24.47 25.73

336

TABLE 1 (continued)

CALCULATED CONS	TANTS a,	b AND c II	V EQN (1)						
Function	a	$b \times I0^2$	$c \times I0^5$	Standard error ^a	Function	a	$b \times 10^2$	$c \times 10^{5}$	Standard error ^a
cis-1-Chloropropene					2-Fluoropropene				
ů	1.0142	5.82	-2.341	0.1132	Č,	4.7675	5.17	-2.035	0.1123
$(\dot{H}^{\circ} - H_{0}^{\circ})/T$	4.9099	2.25	-0.435	0.0642	$(H^{\circ} - H^{\circ})/T$	5.1759	2.54	-0.660	0.0154
$-(F^\circ - H^\circ_0)/T$	47.9898	3.96	-0.905	0.0726	$-(F^\circ-H^\circ_{0})/T$	44.6459	4.37	-1.076	0.0761
S°	52.8998	6.21	-1.340	0.0148	S°	49.8218	6.91	-1.736	0.0676
trans-1-Chloropropene					2-Chloropropene				
C,	2.9558	5.45	-2.146	0.0946	C,	5.2035	5.21	- 2.093	0.1397
$(H^{\circ} - H^{\circ})/T$	5.2272	2.34	-0.515	0.0381	$(H^{\circ} - H^{\circ}_{0})/T$	5.0922	2.65	-0.731	0.0113
$-(F^\circ-H^\circ_{0})/T$	46.4586	4.18	-1.001	0.0752	$-(F^\circ-H^\circ_0)/T$	46.2785	4.46	-1.101	0.0743
S°	51.6858	6.52	-1.516	0.0392	S°	51.3707	7.10	-1.832	0.0751
cis-1-Bromopropene					2-Bromopropene				
C.	1.3417	5.79	-2.339	0.1226	C,	6.0660	5.06	-2.012	0.1254
$(H^{\circ} - H^{\circ}_{0})/T$	4.7477	2.33	-0.483	0.0536	$(H^\circ - H_0^\circ)/T$	5.5143	2.65	-0.744	0.0107
$-(F^\circ-H^\circ_0)/T$	50.4878	3.98	-0.910	0.0675	$-(F^\circ-H^\circ_{0})/T$	48.3722	4.61	-1.171	0.0816
S_p°	55.2356	6.31	-1.392	0.0190	S°	53.8865	7.25	- 1.915	0.0874
trans-1-Bromopropene					2-lodopropene				
C°	4.1233	5.28	-2.076	0.0976	ů	6.3945	4.99	-1.968	0.1145
$(H^\circ - H_{o})/T$	5.4942	2.42	-0.579	0.0245	$L/(^{\circ}_{\circ}H{\circ}H)$	5.7886	2.62	-0.735	0.0132
$-(F^\circ-H^\circ_0)/T$	48.3992	4.35	-1.074	0.0773	$-(F^\circ-H_0^\circ)/T$	49.8798	4.67	-1.203	0.0832
S°	53.8935	6.77	-1.654	0.0558	S°	55.6684	7.30	- 1.938	0.0932
cis-3-Fluoropropene					cis-3-Chloropropene				
C,	1.5714	5.81	-2.296	0.1207	Ç,	2.9920	5.70	- 2.299	0.1545
$(H^\circ - H^\circ)/T$	4.8709	2.35	-0.478	0.0685	$(H_{\circ}-H_{\circ}^{0})/T$	5.3316	2.47	- 0.573	0.0468
$-(F^\circ-H^\circ_0)/T$	45.2660	4.03	-0.910	0.0856	$-(F^\circ-H^\circ_0)/T$	47.3104	4.33	- 1.029	0.0922
S°	50.1369	6.38	-1.388	0.0218	S°	52.6421	6.79	-1.601	0.0488
gauche-3-Fluoropropene					gauche-3-Chloropropene	0			
C_p°	1.7125	5.76	-2.258	0.1081	C,	2.8852	5.70	- 2.290	0.1471
$(H_{\circ}^{0}-H_{\circ}^{0})/T$	5.3534	2.26	-0.430	0.0715	$(H^\circ - H_0^\circ)/T$	5.6081	2.40	-0.531	0.0537
$-(F^\circ-H^\circ_0)/T$	45.9952	4.12	-0.956	0.0918	$-(F^\circ - H^\circ_0)/T$	48.1475	4.35	- 1.045	0.0966
\mathbf{S}°	51.3485	6.38	-1.387	0.0233	S°	53.7556	6.75	- 1.576	0.0462

TABLE 2

337

(Continued on p. 338)

Function	a	$b \times 10^2$	$c \times 10^{5}$	Standard error ^a	Function	a	$b \times I0^2$	$c \times I0^5$	Standard error ^a
Isomeric mixture of <i>cis</i> - and gauche-3-fluoro- propenes C_p^{a} $(H^{\mu} - H_0^{a})/T$ $-(F^{\circ} - H_0^{a})/T$ S° $(H^{\circ} - H_0^{a})/T$ $(H^{\circ} - H_0^{a})/T$ S° gauche-3-Bromopropene C° $(H^{\circ} - H_0^{a})/T$ S° for mopropene $(T^{\circ} - H_0^{a})/T$ S° for mixture of C° for and gauche-3- bromopropenes C° for G° C° C° $(F^{\circ} - H_0^{a})/T$ S° for C° for for C° for C° for C°	1.7605 6.2542 46.7562 53.0105 3.4371 5.5907 49.6086 55.1993 55.1993 55.1993 56.15135 56.15155555555555555555555555555555555	5.74 2.13 2.13 2.13 6.42 6.42 6.42 6.42 6.42 6.42 6.42 6.42	$\begin{array}{c} -0.245\\ -0.367\\ -1.047\\ -1.414\\ -1.414\\ -2.272\\ -0.580\\ -1.073\\ -1.653\\ -1.653\\ -1.659\\ -1.659\\ -1.659\\ -1.659\\ -1.659\\ -1.806\\ -1.806\end{array}$	0.1080 0.0847 0.0847 0.0297 0.1555 0.0264 0.1555 0.0664 0.0664 0.1513 0.0664 0.1513 0.0575 0.0575 0.0575 0.0575 0.0963	Isomeric mixture of <i>cis</i> - and gauche-3-chloro- propenes C_p° $(H^{\circ} - H_0^{\circ})/T$ $-(F^{\circ} - H_0^{\circ})/T$ S° cis -3-Iodopropene C_p° $(H^{\circ} - H_0^{\circ})/T$ $-(F^{\circ} - H_0^{\circ})/T$ S° gauche-3-Iodopropene C_p° $(H^{\circ} - H_0^{\circ})/T$ S° Isomeric mixture of cis- and gauche-3- iodopropenes C_p° $(H^{\circ} - H_0^{\circ})/T$ S° C_p° C_p° $(H^{\circ} - H_0^{\circ})/T$	3.3606 6.9865 6.9865 7.82511 55.2376 3.552376 3.57339 5.6.3789 4.0373 5.9420 51.7051 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.64710 57.6471000000000000000000000000000000000000	5.58 2.21 4.64 6.85 5.64 7.00 7.00 7.00 7.03 7.03 7.03 7.03 7.00 7.79	$\begin{array}{c} -2.217\\ -2.217\\ -0.447\\ -1.637\\ -1.637\\ -1.637\\ -2.289\\ -1.705\\ -1.705\\ -1.705\\ -1.725\\ -1.725\\ -1.725\\ -1.725\\ -1.725\\ -1.725\\ -1.725\\ -2.247\\ -2.247\\ -2.247\\ -2.247\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.248\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\ -2.247\\ -2.288\\$	0.1276 0.0637 0.0622 0.1225 0.0622 0.0622 0.0632 0.0633 0.0668 0.1613 0.0668 0.1613 0.0668 0.1665 0.1065 0.1065 0.1065
^a Standard error of Y is	the number	S, where							

 $S = \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y}_i)^2/n - m - 1}$ such that *n* is the number of observations; *m* is the number of independent variables; *Y_i* is the *i*th calculated value of *Y* (Table 1); and \bar{Y}_i is the extrapolated value of *Y* (eqn (1)).

338

TABLE 2 (continued)

TABLE 3

cis-1-Chloropropene	trans-1-Chloro- propene	cis-1-Bromopropene	trans-1-Bromo- propene
Fundamental frequenci	$es (cm^{-1})$		
3098,* 3045, 2982 2960, 2934, 1640 1454, 1448, 1383 1332, 1217, 1070	3073,* 3034, 2976 2960, 2934, 1649 1456, 1446, 1380 1296, 1247, 1105	3102, ° 3034, 2978 2960, 2947, 1638 1456, 1444, 1388 1312, 1212, 1070	3078,° 3029, ^b 2980 2961, 2937, 1637 1461, 1446, 1387 1292, 1225, 1087
1033, 937, 933 797, 759, 690 564, 398, (225)	1044, 960, 930 876, 806, 757 422, 270, (220)	1041, 936, 925 765, 684, 677 494, 382, (194)	1041, 952, 931 743, 729, 677 355, 250, (210)
Principal moments of in	nertia (gcm ² × 10 ³⁹)		
$I_{\rm A} = 5.9193^{\rm d}$ $I_{\rm B} = 23.1014$ $I_{\rm C} = 28.5356$	$I_{\rm A} = 2.0141^{\rm d}$ $I_{\rm B} = 34.3407$ $I_{\rm C} = 35.8338$	$I_{\rm A} = 6.7549^{\circ}$ $I_{\rm B} = 32.1740$ $I_{\rm C} = 38.4095$	$I_{\rm A} = 2.0555^{\rm e}$ $I_{\rm B} = 49.6844$ $I_{\rm C} = 51.2285$
Reduced moment of ine	ertia (gcm ² × 10 ³⁹)		
$I_{\rm red}=0.4661^{\rm f}$	$I_{\rm red}=0.4696^{\rm r}$	$I_{\rm red}=0.4695^{\rm r}$	$I_{\rm red}=0.4717^t$
Internal rotational barr	ier height (cal mol ⁻¹)		
602*	2170 *	230 *	2120 ^s
Isomerization energy (c	al mol ⁻¹)		
	_		—
Symmetry number, σ			
1	1	1	1
Molecular weight		120	120.99
2-Fluoropropene	2-Chloropropene	2-Bromopropene	2-lodcpropene
Fundamental frequenci	es (cm ⁻¹)		
3141, ^b 3059, 3012 2975, 2942, 1687 1448, 1448, 1429 1401, 1270, 1048 1008, 944, 862 846, 629, 472 404, 352, (191)	3121, ¹ 3025, 2992 2973, 2940, 1645 1450, 1450, 1412 1382, 1184, 1046 999, 926, 879 692, 641, 434 396, 343, (196)	3115, ³ 3010, 2987 2972, 2930, 1640 1443, 1439, 1405 1379, 1170, 1045 996, 925, 883 680, 551, 414 335, 301, (196)	3103, ^k 2994, 2974 2928, 2967, 1627 1457, 1436, 1406 1377, 1159, 1056 991, 926, 893 701, 514, 389 318, 271, (195)
Principal moments of in	nertia (gcm ² × 10 ³⁹)		
$I_{A} = 17.077^{1}$ $I_{B} = 9.395$ $I_{C} = 8.198$	$I_{\rm A} = 17.125^{\rm m}$ $I_{\rm B} = 8.927$ $I_{\rm C} = 25.536$	$I_{\rm A} = 35.625^{\rm n}$ $I_{\rm B} = 8.949$ $I_{\rm C} = 27.192$	$I_{\rm A} = 8.957^{\circ}$ $I_{\rm B} = 35.850$ $I_{\rm C} = 44.291$

SUMMARY OF USED FREQUENCIES AND STRUCTURAL DATA

(Continued on p. 340)

TABLE 3 (continued)

2-Fluoropropene	2-Chloropropene	2-Bromopropene	2-Iodopropene
Reduced moment of ine	ertia $(g \text{cm}^2 \times 10^{39})$		
$I_{\rm red} = 0.553^{\rm I}$	$I_{\rm red} = 0.576^{\rm m}$	$I_{\rm red} = 0.584^{\rm o}$	$I_{\rm red} = 0.589^{\circ}$
Internal rotational barr	ier height (cal mol ⁻¹)		
2440P	2671P	2695°	2700 ^r
Isomerization energy (c	al mol ⁻¹)		
-	—		
Symmetry number, σ			
1	1	1	1
Molecular weight			
60.07	76.53	120.99	167.98
cis-3-Fluoropropene	gauche-3-Fluoro- propene	cis-3-Chloropropene	gauche-3-Chloro- propene
Fundamental frequenci	es (cm ⁻¹)		
3092,* 3026, 2990	3092,* 3026, 2990	3091, 3021, 3018	3091, 3021, 3018
2990, 2957, 1652	2990, 2939, 1630	2987, 2940, 1647	2987, 2958, 1642
1468, 1413, 1383	1459, 1426, 1362	1445, 1430, 1291	1445, 1412, 1291
1289, 1240, 1107	1289, 1240, 1163	1290, 1177, 1050	1257, 1201, 1100
1027, 989, 989	989, 916, 1027	1050, 931, 923	987, 938, 933
352, 273, (163)	432, 345, (85)	795, 712, 550 513, 253, (94)	896, 738, 590 409, 290, (56)
Principal moments of it	pertia ($m^2 \times 10^{39}$)		
$I_{.} = 4.835^{*}$	$I_{-} = 2.987^{\mu}$	$L = 19345^{\circ}$	I = 29.724
$I_{\rm p} = 13.917$	$I_{\rm p} = 19.605$	$I_{\rm R} = 6.708$	$I_{\rm A} = 3.985$
$I_{\rm C} = 18.223$	$I_{\rm C} = 20.271$	$I_{\rm C} = 25.522$	$I_{\rm C} = 30.620$
Reduced moment of in-	ertia (gcm ² × 10 ³⁹)		
$I_{\rm red} = 1.194^{\rm u}$	$I_{\rm red} = 1.544^{\rm u}$	$I_{\rm red} = 1.046^{\circ}$	$I_{\rm red} = 1.710^{\rm v}$
Internal rotational barn	rier height (cal mol ⁻¹)		
—		_	_
Isomerization energy (c	al mol ⁻¹)		
306*		500*	
Symmetry number, σ			
I	1	1	1
Molecular weight			
60.07	60.07	76.53	76.53

TABLE 3 (continued)

cis-3-Bromopropene	gauche-3-Bromo- propene	cis-3-Iodopropene	gauche-3-Iodo- propene
Fundamental frequenci	es (cm ⁻¹)		
3088, 3021, 3010	3088, 3021, 3010	3092,* 3016, 2984	3092,3 3016, 2984
2983, 2966, 1645	2983, 2966, 1631	2984, 2968, 1645	2984, 2968, 1632
1463, 1408, 1295	1442, 1408, 1295	1444, 1420, 1307	1439, 1405, 1292
1249, 1154, 1042	1211, 1192, 1072	1201, 1088, 1022	1187, 1150, 1050
1040, 926, 921	986, 935, 929	981, 932, 920	981, 932, 920
810, 698, 543	867, 690, 536	825, 669, 540	825, 669, 491
456, 215, (89)	392, 252, (55)	420, 197, (107)	380, 232, (54)
Principal moments of i	nertia (gcm ² × 10 ³⁹)		
$I_{A} = 29.524^{*}$	$I_{\star} = 43.755^{\circ}$	$I_{\rm A} = 7.262^{\rm s}$	$I_{A} = 3.488^{\circ}$
$I_{\rm B} = 7.240$	$l_{\rm B} = 4.417$	$I_{\rm R} = 38.188$	$l_{0} = 60.393$
$I_{\rm c} = 36.233$	$I_{\rm C} = 45.034$	$I_{\rm C} = 49.919$	$I_{\rm C} = 62.948$
Reduced moment of in	ertia (gcm² × 10 ³⁹)		
$I_{\rm red} = 1.113^{\circ}$	$I_{red} = 1.959^{\circ}$		—
Internal rotational barn	rier height (cal mol ⁻¹)		
	-	_	
Isomerization energy (c	cal mol ⁻¹)		
850 *	—	1600-	
Symmetry number, σ			
1	1	1	1
Molecular weight			
120.99	120.99	167.89	167.89

^a All frequency values obtained from ref. 5. ^b This is liquid state (Raman spectra) frequency; the same given reference. ^c All frequency values obtained from ref. 8. ^d Moments of inertia values calculated; this work. Structural data taken from ref. 5. ^e Moments of inertia values calculated; this work. Structural data—see ref. 8. ^f Reduced moment of inertia values calculated; this work. Structural data taken from ref. 5. ^e Moments calculated; this work. Structural data taken from refs. 5, 7, a.td 8. ^e Internal rotational barrier values taken from refs. 6 and 9. ^b All frequencies taken from ref. 11. ¹ All frequencies taken from ref. 14. ^J All frequencies taken from ref. 15. ^k All frequencies taken from ref. 16. ¹ Calculated, this work. Structural data from ref. 13. ^m Calculated, this work. Structural data from refs. 13 and 14. ^a Calculated, this work. Structural data from refs. 13 and 15. ^o Calculated, this work. Structural data from refs. 19 and 20. ⁱ All frequency and structural data from refs. 19 and 23. ^a Structural and isomerization energy data from ref. 20. ^v Structural and isomerization energy data from ref. 23. ^w Isomerization energy calculated from mass equilibrium data. See also ref. 23. ^x Calculated using estimated mass equilibrium data. See refs. 19 and 23.

found in Table 2. The values of the used molecular parameters for the calculation of the presented thermodynamic functions are given in Table 3.

DISCUSSION

I-Chloro- and I-bromopropenes

The thermodynamic functions for 1-chloro- and 1-bromopropenes (Table 1) were calculated using the infrared frequency assignments of Berg and Elst⁵; the internal rotational barrier values indicated by Good et al.⁶ and the available structural data as listed by Beaudet⁷ for the gaseous state *cis*- and *trans*-1-chloropropenes. The infrared vibrational frequency data of Elst et al.⁸ supplemented with the internal rotational barrier values as compiled by Good et al.⁶ and structural data given by Beaudet⁹ again for the gaseous state, were used to calculate the thermodynamic functions for *cis*- and *trans*-1-bromopropenes.

TABLE 4

COMPARISON OF S° (cal K⁻¹ mol⁻¹) VALUES AT 298.15 K

C	S° (cal K ⁻¹ ma	l ⁻¹) at 298.15 K	
Compound	This work (Table 1)	Ref. 10	Ref. 21
cis-1-Fluoropropene		69.0	_
trans-1-Fluoropropene		69.0	
cis-1-Chloropropene	70.22	71.5	
trans-1-Chloropropene	69.74	71.5	
cis-1-Bromopropene	72.79	74.5	
trans-1-Bromopropene	72.55	74.5	
cis-1-Iodopropene		76.7	
trans-I-Iodopropene		76 .7	
cis-3-Fluoropropene	67.92		
gauche-3-Fluoropropene	69.10	_	
Isomer-3-Fluoropropene	70.88	70.6	72.35
cis-3-Chloropropene	71.43	_	-
gauche-3-Chloropropene	72.43		·
Isomer-3-Chloropropene	74.15	73.3	
cis-3-Bromopropene	74.22		
gauche-3-Bromopropene	75.20	_	
Isomer-3-Bromopropene	76.57	75.8	-
cis-3-Iodopropene	75.67	_	
gauche-3-Iodopropene	77.01		
Isomer-3-iodopropene	77.15	77.9	

If we compare (Table 4) our calculated entropy values (at 298.15 K) with those given by Alfassi et al.¹⁰, we note that our values for both 1-chloro- and 1-bromopropenes are smaller. However, Alfassi et al.¹⁰ present the same entropy values for both 1-halopropene isomers (*cis*- and *trans*-forms). This and the somewhat unclear use

342

of the additivity methods to obtain their¹⁰ presented entropy values (Table 4) mar the credibility of their results. Thus it seems preferable to use thermodynamic property values obtained directly from gaseous state spectroscopic calculations (Tables 1–3). It should be noted that the contribution to the internal restricted rotation for these 1-halopropenes was calculated by means of the Pitzer–Gwinn method¹.

In view of these considerations, the overall calculated thermodynamic function (Table 1) accuracy is estimated to be within 1-2% interval; that is within the experimental error range.

2-Halopropenes

Thermodynamic functions for 2-halopropenes (Table 1) were calculated using the following gaseous state vibrational frequency and structural data values; for 2-fluoropropene the frequency assignments made by Crowder and Smyrl¹¹; the internal rotational barrier value from Benz et al.¹²; while the needed C-F distances from the compilation of Bondi and Lielmezs¹³. For the case of 2-chloropropenes, the frequency values were taken from Meyer et al.¹⁴, while the internal rotational barrier were taken from Benz et al.¹². For 2-bromopropene the vibrational frequency assignments made by Meyer and Guenthard¹⁵ were used with the internal barrier value again taken from Benz et al.¹². Finally, for 2-iodopropene the vibrational frequency assignments of Meyer et al.¹⁶ were used while the value of internal rotational barrier was estimated from the known barriers of 2-fluoro-, 2-chloro- and 2-bromopropenes using the observation made by Lielmezs and coworkers^{17,18} that the internal rotational barriers may be correlated with the corresponding substituent atom ionization potentials within the given compound series. The contribution to the internal restricted rotation for all 2-halopropenes was obtained by means of the Pitzer-Gwinn method¹.

Considering the overall reliability of the used spectroscopic and structural data, it is estimated that thermodynamic function values have 1-2% accuracy; that is, the calculated values should be within the experimental error range.

3-Halopropenes

Thermodynamic functions of the 3-halopropenes were calculated for *cis*- and *trans*-forms and the isomeric *cis*- and *trans*-form mixtures (Table 1). As there were not available sufficiently reliable internal rotational barrier values; but rather it was possible to obtain isomerization energy and torsional frequency values (Table 3) for all 3-halopropenes; the thermodynamic functions (Table 1) were then calculated by means of the Lielmezs-Bondi^{2,3} method.

For 3-fluoropropenes, the vibrational frequencies were taken from McLachlan and Nyquist¹⁹ while the isomerization energy, the structural data and the torsional frequency values were taken from Hirota²⁰. Table 4 compares the calculated entropy value at 298.15 K between our work; the value obtained by Alfassi et al.¹⁰ using the additivity method; and value estimated by Bryce and Lielmezs²¹. The agreement between this work and that of Alfassi et al.¹⁰ is excellent. The deviation found in the work of Bryce and Lielmezs²¹ is explainable noting that Bryce and Lielmezs estimated the fundamental deformation frequencies of 3-fluoropropene from a set of experimental frequency values of 3-chloro-, 3-bromo- and 3-iodopropene as given by Thompson and Torkington²². Even so Bryce's and Lielmezs²¹ results were within their estimated 2-3% uncertainty range.

For 3-chloro, 3-bromo- and 3-iodopropenes we used vibrational frequency data, mainly in the liquid state from McLachlan and Nyquist¹⁹ and from Sourisseau and Pasquier²³; while the needed isomerization energies were calculated from the known isomer mass ratios^{19,20,23}. All the calculated thermodynamic functions are found in Table 1; while the used spectroscopic, thermodynamic and structural data are given in Table 3. Again, Table 4 shows the comparison between our calculated entropy values for all 3-halopropenes and the values obtained by Alfassi et al.¹⁰ using the group additivity method. The agreement for all 3-halopropenes is very good; and we estimate that our results (Table 1) will be well within the error (less than $\pm 1\%$) of our experimental determination.

ACKNOWLEDGEMENT

The financial assistance of the National Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 K. S. Pitzer and W. D. Gwinn, J. Chem. Phys., 10 (1942) 428.
- 2 J. Lielmezs and A. A. Bondi, Rotational Isomers in Thermodynamic Calculations, Shell Development Company TR-208-58-R, 1958.
- 3 J. Lielmezs and A. A. Bondi, Chem. Eng. Sci., 20 (1965) 706.
- 4 "TRIP" Program, University of British Columbia, Computing Centre, 1973.
- 5 G. C. v. d. Berg and R. Elst, Rec. Trav. Chim., 91 (1972) 105.
- 6 W. Good, R. J. Conan, Jr., A. Bauder and Hs. H. Guenthard, J. Mol. Spectrosc., 41 (1972) 381.
- 7 R. A. Beaudet, J. Chem. Phys., 40 (1964) 2705.
- 8 R. Elst, G. C. v. d. Berg and A. Oskam, Rec. Trav. Chim., 91 (1972) 417.
- 9 R. A. Beaudet, J. Chem. Phys., 50 (1969) 2002.
- 10 Z. B. Alfassi, D. M. Golden and S. W. Benson, J. Chem. Thermodyn., 5 (1973) 411.
- 11 G. A. Crowder and N. Smyrl, J. Mol. Spectrosc., 40 (1971) 117.
- 12 H. P. Benz, A. Bauder and Hs. H. Guenthard, J. Mol. Spectrosc., 21 (1966) 105.
- 13 A. A. Bondi and J. Lielmezs, Van der Waals Radii, Shell Development Company, TR, 1958.
- 14 R. Meyer, H. Hunziker and Hs. H. Guenthard, Spectrochim. Acta, 23A (1967) 1775.
- 15 R. Meyer and Hs. H. Guenthard, Spectrochim. Acta, 23A (1967) 2341.
- 16 R. Meyer, H. Hunziker, and Hs. H. Guenthard, Spectrochim. Acta, 25A (1969) 295.
- 17 J. Lielmezs and J. P. Morgan, Nature, 202 (1964) 1106.
- 18 J. Lielmezs and B. J. Hagan, Theoret. Chim. Acta (Berlin), 15 (1969) 89.
- 19 R. D. McLachlan and R. A. Nyquist, Spectrochim. Acta, 24A (1968) 103.
- 20 E. Hirota, J. Chem. Phys., 42 (1965) 2071.
- 21 H. W. Bryce and J. Lielmezs, Can. J. Chem. Eng., 46 (1968) 136.
- 22 H. W. Thompson and P. Torkington, Trans Faraday Soc., 42 (1946) 432.
- 23 C. Sourisseau and B. Pasquier, J. Molec. Struct., 12 (1972) 1.