# THERMODYNAMIC PROPERTIES OF OXYGEN COMPOUNDS

# I. VINYL ACETATE

### S. A. KUDCHADKER, H. B. GOYAL AND A. P. KUDCHADKER

Kanpur Critical Data Center, Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Kanpur-208016 (India) (Received 11 November 1974)

## ABSTRACT

A complete vibrational assignment is made and ideal gas thermodynamic properties of vinyl acetate have been reported from 100–1500 K. Internal rotational contributions have been calculated using Pitzer and Gwinn's tables.

## INTRODUCTION

In the course of our process engineering studies of vinyl acetate from acetylene and acetic acid, we found that no ideal gas thermodynamic properties for vinyl acetate have been published so far. Therefore, we decided to collect the literature information on molecular parameters and fundamental frequencies so as to enable us to calculate the ideal gas thermal functions for this molecule.

# MOLECULAR STRUCTURE

- Two planar conformations are possible for vinyl acetate:



where R and R' are methyl and vinyl groups, respectively. As no microwave studies have been carried out for vinyl acetate, the molecular conformation is not known. However, from infrared studies<sup>1,2</sup> it is found that no rotational isomers are present. Rao and Curl<sup>3</sup> have established *cis* conformation for vinyl formate from their microwave spectral studies. Crowder<sup>4</sup> interpreted the infrared and Raman data for vinyl trifluoroacetate in terms of one conformer of  $C_s$  symmetry. The review article by Jones and Owen<sup>5</sup> makes it very clear that vinyl acetate exists as *cis* conformer with  $C_s$  symmetry as shown in Fig. 1. Here the carbon oxygen skeleton has a planar structure and one hydrogen of the methyl group is in plane while the other two are symmetrically arranged with respect to it. The values of the structural parameters adopted in this work are given in Fig. 1. These are taken from the parameters of similar molecules, namely vinyl formate<sup>1</sup>, divinyl ether<sup>6</sup>, methyl acetate<sup>6,7</sup> and acetic acid<sup>8</sup>.



Fig. 1. Molecular structure of vinyl acetate.

### VIBRATIONAL ASSIGNMENTS

Kotorlenko et al.<sup>2</sup> reported assignments for this molecule only from infrared measurements. Feairheller and Katon<sup>1</sup> thoroughly studied the infrared and Raman spectra and reported 19 in-plane and 9 out-of-plane fundamental frequencies. The missing in-plane frequency is  $\delta_{C=C-O}$  and the one out of plane is the torsional frequency due to methyl group.

McManis<sup>9</sup> studied the infrared spectra of series of vinyl esters and assigned 464 cm<sup>-1</sup> to the  $\delta_{c=c=0}$  mode. Crowder<sup>4</sup> reported a similar value (465 cm<sup>-1</sup>) for this mode in the case of vinyl trifluoroacetate. Assignments of the three lowest in-plane frequencies of similar molecules are given in Table 1. We felt that we should reassign the two lowest in-plane frequencies reported by Feairheller and Katon<sup>1</sup>. We have assigned 462 cm<sup>-1</sup> to the  $\delta_{c=c=0}$  mode and 406 cm<sup>-1</sup> to the  $\delta_{c=c=0}$  mode. This means that  $\delta_{c=0=c}$  has not been observed by Feairheller and Katon. The missing  $\delta_{c=0=c}$ 

#### TABLE I

| Mode                                                           | Methy! acetate <sup>11</sup> | Vinyl trifluoroacetate <sup>4</sup> | Vinyl acet | ate       |
|----------------------------------------------------------------|------------------------------|-------------------------------------|------------|-----------|
|                                                                |                              |                                     | Ref. 1     | This work |
| δ <sub>c=c-0</sub>                                             |                              | 464                                 |            | 462       |
| $\delta_{c-c=0}$                                               | 429                          | 356*                                | 462        | 406       |
| δ <sub>c=c-0</sub><br>δ <sub>c-c=0</sub><br>δ <sub>c-o-c</sub> | 303                          | 295                                 | 406        | 299       |

\* Low value because of mass effect of CF<sub>3</sub> group.

frequency is found to be  $306-323 \text{ cm}^{-1}$  in aliphatic esters<sup>10</sup>,  $303 \text{ cm}^{-1}$  in methyl acetate<sup>11</sup> and  $295 \text{ cm}^{-1}$  in vinyl trifluoroacetate<sup>4</sup>. We have adopted the average value  $299 \text{ cm}^{-1}$  in our calculations.

The out-of-plane missing torsional frequency adopted in this work is  $100 \text{ cm}^{-1}$  which is transferred from methyl acetate<sup>12</sup>. In acetic acid this value is reported to be  $93 \text{ cm}^{-1}$  by Haurie and Novak<sup>13</sup> and  $101 \text{ cm}^{-1}$  by Fukushima and Zwolinski<sup>14</sup>. The fundamental frequencies adopted in this work are given in Table 2.

## TABLE 2

| In-plai | ne frequencies | (a`)                              |    |      |                                             |
|---------|----------------|-----------------------------------|----|------|---------------------------------------------|
| 1       | 3120           | v <sub>2</sub> (CH <sub>2</sub> ) | 11 | 1353 | δ(CH)                                       |
| 2       | 3090           | v(CH)                             | 12 | 1291 | v(C-C)                                      |
| 3       | 3040           | v <sub>s</sub> (CH <sub>2</sub> ) | 13 | 1217 | v <sub>a</sub> (COC)                        |
| 4       | 2996           | $v_{a}(CH_{3})$                   | 14 | 1018 | $\delta(CH_2)$ rock                         |
| 5       | 2940           | $v_{s}(CH_{3})$                   | 15 | 972  | $\delta(CH_3)$ rock                         |
| 6       | 1760           | v(C=O)                            | 16 | 847  | v <sub>s</sub> (COC)                        |
| 7       | 1644           | v(C=C)                            | 17 | 637  | $\delta(CO_2)$                              |
| 8       | 1428           | $\delta(CH_2)$                    | 18 | 462  | δ(C=C-O)                                    |
| 9       | 1382           | $\delta_{\bullet}(CH_3)$          | 19 | 406  | δ(C-C=O)                                    |
| 10      | 1370           | $\delta_{s}(CH_{3})$              | 20 | 299  | δ(C-O-C)                                    |
| Out-oj  | f-plane freque | ncies (a )                        |    |      |                                             |
| 21      | 3020           | v. (CH3)                          | 26 | 712  | y(CH <sub>2</sub> ) twist                   |
| 22      | 1428           | $\delta_{*}(CH_{3})$              | 27 | 583  | $\gamma$ (CH <sub>3</sub> CO <sub>2</sub> ) |
| 23      | 1134           | $\delta(CH_3)$ rock               | 28 | 238  | Skeletal def.                               |
| 24      | 948            | 7(CH <sub>2</sub> ) wag           | 29 | 160  | Skeletal def.                               |
| 25      | 874            | 7(CH)                             | 30 | 100  | Torsion (C-CH <sub>3</sub> )                |

ADOPTED FUNDAMENTAL FREQUENCIES OF VINYL ACETATE (cm<sup>-1</sup>)

### THERMODYNAMIC FUNCTIONS

The ideal gas thermal functions  $C_p^\circ$ ,  $(H^\circ - H_0^\circ)/T$ ,  $S^\circ$ ,  $-(G^\circ - H_0^\circ)/T$  have been calculated using the moments of inertia obtained from the molecular parameters given in Fig. 1 and the vibrational frequencies given in Table 2. The internal rotational contributions of the methyl group to the thermodynamic functions have been obtained using Pitzer and Gwinn's tables<sup>15</sup>. For this purpose the potential barrier height<sup>16</sup> was obtained from eqn (1)

$$V^{\circ} = \frac{v_{\text{tors}}^2}{F} + \frac{v_{\text{tors}}}{2} + \frac{9F}{4} \tag{1}$$

where  $F = h/8\pi^2 cI_r$ 

- h = Planck's constant
- c = velocity of light
- $I_r$  = reduced moment of inertia

| IDEAL GA  | DEAL UAS THERMULT NAMIC P                        | IC LINNEENTED OF                                 |                                                                              |                                       |                                              |                                              |                    |
|-----------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------|--------------------|
| Temp. (K) | C;<br>(cul deg <sup>-1</sup> mol <sup>-1</sup> ) | S°<br>(cal deg <sup>-1</sup> mol <sup>-1</sup> ) | $- (G^{\circ} - H_{0}^{\circ})/T$ (cal deg <sup>-1</sup> mol <sup>-1</sup> ) | II°– II°<br>(kcal mol <sup>–1</sup> ) | ΔH <sup>*</sup><br>(kcal mol <sup>-1</sup> ) | AG <sup>*</sup><br>(kcal mol <sup>−1</sup> ) | log K <sub>t</sub> |
| 100.00    | 12,641                                           | 59,632                                           | 50.936                                                                       | 0.979                                 | - 72.903                                     | - 66,429                                     | 145.17950          |
| 200.00    | 17.912                                           | 70.176                                           | 57.643                                                                       | 2.507                                 | - 74.191                                     | -61.279                                      | 66,96290           |
| 273.15    | 22.168                                           | 76.377                                           | 61,844                                                                       | 3.970                                 | -75.154                                      | - 56,411                                     | 45,13482           |
| 298.15    | 23,662                                           | 78.386                                           | 63.146                                                                       | 4.544                                 | - 75,460                                     | - 54.672                                     | 40.07530           |
| 300.00    | 23,773                                           | 78.533                                           | 63.241                                                                       | 4.588                                 | - 75.482                                     | - 54.540                                     | 39,73194           |
| 400.00    | 29.567                                           | 86,181                                           | 68,034                                                                       | 7.258                                 | - 76.503                                     | -47.383                                      | 25,88859           |
| 500.00    | 34,648                                           | 93.340                                           | 72.388                                                                       | 10.476                                | - 77.479                                     | - 39,980                                     | 17,47523           |
| 600.00    | 38,900                                           | 100.044                                          | 76,441                                                                       | 14.161                                | - 78,157                                     | -32.411                                      | 11.80567           |
| 700.00    | 42,441                                           | 106.314                                          | 80.264                                                                       | 18.235                                | - 78.663                                     | - 24.740                                     | 7.72403            |
| 800.00    | 45,418                                           | 112.182                                          | 83,889                                                                       | 22.633                                | - 79,018                                     | -17.007                                      | 4,64606            |
| 00'006    | 47.946                                           | 117.681                                          | 87.340                                                                       | 27.306                                | - 79.241                                     | - 9,241                                      | 2,24396            |
| 1000.00   | 50,104                                           | 122.847                                          | 90.634                                                                       | 32.211                                | - 79.337                                     | - 1.436                                      | 0.31374            |
| 1100.00   | 51,955                                           | 127.711                                          | 93.786                                                                       | 37.316                                | - 79.334                                     | 6,303                                        | - 1,25223          |
| 1200.00   | 53,547                                           | 132.302                                          | 96.807                                                                       | 42.592                                | - 79.261                                     | 14.123                                       | -2.57219           |
| 1300.00   | 54.919                                           | 136.643                                          | 707.66                                                                       | 48.016                                | - 79,131                                     | 21.891                                       | -3.68020           |
| 1400.00   | 56,107                                           | 140.758                                          | 102.495                                                                      | 53.567                                | - 78.952                                     | 29.701                                       | -4,63647           |
| 1500.00   | 57.138                                           | 144.665                                          | 105.178                                                                      | 59.230                                | - 78.733                                     | 37,434                                       | - 5,45408          |

•  $I_{a} = 47.230 \text{ annu } \mathbb{A}^{2}$ ;  $I_{b} = 235.820 \text{ annu } \mathbb{A}^{2}$ ;  $I_{a} = 279.921 \text{ annu } \mathbb{A}^{2}$ ;  $I_{r} = 2.294 \text{ annu } \mathbb{A}^{2}$ ;  $V_{o} = 622.8 \text{ cal mol}^{-1}$ .

| ÷.                                                   |
|------------------------------------------------------|
| F                                                    |
| -                                                    |
| 2                                                    |
| 5                                                    |
| 1                                                    |
| 5                                                    |
| <                                                    |
|                                                      |
| -                                                    |
| >                                                    |
| 7                                                    |
| 1                                                    |
| >                                                    |
|                                                      |
| Ĩ.                                                   |
| C                                                    |
| ~                                                    |
| C.                                                   |
| č                                                    |
| ÷                                                    |
| ÷                                                    |
| ~                                                    |
| E.                                                   |
| ē                                                    |
|                                                      |
| 1                                                    |
| ç                                                    |
| ۵.                                                   |
| ÷ .                                                  |
| $\underline{\cdot}$                                  |
| Ξ                                                    |
| 2                                                    |
|                                                      |
| <                                                    |
| ≶                                                    |
| ₹Z,                                                  |
| <b>ANY</b>                                           |
| <b>NVNA</b>                                          |
| ANYOC                                                |
| <b>ANYCIO</b>                                        |
| MODYNA                                               |
| RMODYNA                                              |
| ERMODYNA                                             |
| HERMODYNA                                            |
| THERMODYNA                                           |
| THERMODYNA                                           |
| S THERMODYNA                                         |
| <b>AS THERMODYNA</b>                                 |
| AS THERMODYNA                                        |
| GAS THERMODYNA                                       |
| GAS THERMODYNA                                       |
| L GAS THERMODYNA                                     |
| AL GAS THERMODYNA                                    |
| EAL GAS THERMODYNA                                   |
| DEAL GAS THERMODYNA                                  |
| IDEAL GAS THERMODYNA                                 |
| IDEAL GAS THERMODYNAMIC PROPERTIES OF VINYI, ACPTATE |

TABLE 3

As there is some uncertainty in the torsional frequency the internal rotational contributions were calculated by varying the torsional frequency by  $\pm 10 \text{ cm}^{-1}$ . The calculated potential barrier heights are 526, 623 and 728 cal mol<sup>-1</sup> corresponding to the torsional frequencies 90, 100 and 110 cm<sup>-1</sup>, respectively. The maximum deviations due to the uncertainty in torsional frequency are at lower temperatures and they are  $\pm 0.08$ ,  $\pm 0.04$ ,  $\pm 0.05$  and  $\pm 0.09$  cal deg<sup>-1</sup> mol<sup>-1</sup> for  $C_p^{\circ}$ ,  $(H^{\circ}-H_0^{\circ})/T$ ,  $S^{\circ}$  and  $-(G^{\circ}-H_0^{\circ})/T$ , respectively. This shows that the errors in the thermal functions are very low owing to the uncertainty in the torsional frequency. The enthalpy of formation as a function of temperature were calculated by the usual procedure. The enthalpy of formation<sup>17</sup> at 298.15 K was taken as  $-75.46 \pm 0.18$  kcal mol<sup>-1</sup>. The values of thermal functions of C<sup>18,19</sup>, H<sub>2</sub><sup>20</sup>, and O<sub>2</sub><sup>21</sup> in their reference states are used. The calculated thermodynamic properties are given in Table 3.

#### ACKNOWLEDGEMENTS

The authors thank the IIT/K Computer Center for providing the computer facilities. SAK thanks the National Standard Reference Data Program of the National Bureau of Standards for the financial support.

#### REFERENCES

- 1 W. R. Feairheller and J. E. Katon, J. Mol. Struct., 1 (1968) 239.
- 2 L. A. Kotorlenko, A. P. Gardenina, A. F. Rekasheva and L. A. Kipriamova, *Zh. Prikl. Spektrosk.*, 5 (1966) 366.
- 3 V. M. Rao and R. F. Curl, Jr., J. Chem. Phys., 40 (1964) 3688.
- 4 G. A. Crowder, Spectrochim. Acta, 28A (1972) 1625.
- 5 G. I. L. Jones and N. L. Owen, J. Mol. Struct., 18 (1973) 1.
- 6 P. W. Allen and L. E. Sutton, Acta Crystallogr., 3 (1950) 46.
- 7 J. M. O'Gorman, W. Shand and V. Schomaker, J. Amer. Chem. Soc., 72 (1950) 4222.
- 8 W. J. Tabor, J. Chem. Phys., 27 (1957) 974.
- 9 G. E. McManis, Appl. Spectrosc., 24 (1970) 495.
- 10 J. J. Lucier and F. F. Bentley, Spectrochim. Acta, 20 (1964) 1.
- 11 J. K. Wilmshurst, J. Mol. Spectrosc., 1 (1957) 201.
- 12 T. Miyazawa, Bull. Chem. Soc. Japan, 34 (1961) 691.
- 13 M. Haurie and A. Novak, J. Chem. Phys., 62 (1965) 137.
- 14 K. Fukushima and B. J. Zwolinski, J. Chem. Phys., 50 (1969) 737.
- 15 K. S. Pitzer and W. D. Gwinn, J. Chem. Phys., 10 (1942) 428.
- 16 G. Allen and P. N. Brier and G. Lane, Trans. Faraday Soc., 63 (1967) 824.
- 17 J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, London and New York, 1970, p. 225.
- 18 E. William, Nat. Bur. Stand., Report No. 6928, (1960), table B-39.
- 19 E. D. West and S. Ishihara, Amer. Soc. Test. Mater., (1965).
- 20 Selected Values of Properties of Chemical Compounds, Thermodynamics Research Center Data Project, Thermodynamics Research Center, Texas A & M University, College Station, Texas (loose leaf data sheets, extant, 1974).
- 21 Selected Values of Properties of Hydrocarbons and Kelated Compounds, American Petroleum Institute Research Project 44, Thermodynamics Research Center, Texas A & M University, College Station, Texas (loose leaf data sheets, extant, 1974).