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ABSTRACT

A complete vibrational assignment is made and ideal gas thermodynamic
properties of vinyl acetate have been reported from 100-1500 K. Interaal rotational
contributions have been calculated using Pitzer and Gwinn’s tables.

INTRODUCTION

In the course of our process engineering studies of vinyl acetate from acetylene
and acetic acid, we found that no ideal gas thermodynamic properties for vinyl
acetate have been published so far. Therefore, we decided to cellect the literature
information on molecular parameters and fundamental frequencies so as to enable us
to calculate the ideal gas thermal functions for this molecule.

MOLECULAR STRUCTURE

- Two planar conformations are possible for vinyl acetate:
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where R and R’ are methyl and vinyl groups, respectively. As no microwave studies
have been carried out for vinyl acztate, the molecular conformation is not known.
However, from infrared studies!*? it is found that no rotational isomers are present.
Rao and Curl® have established cis conformation for vinyl formate from their
microwave spectral studies. Crowder® interpreted the infrared and Raman data for
vinyl trifluoroacetate in terms of one conformer of C, symmetry. The review article
by Jones and Owen® makes it very clear that vinyl acetate exists as cis conformer with
C, symmetry as shown in Fig. 1. Here the carbon oxygen skeleton has a planar
structure and one hydrogen of the methyl group is in plane while the other two are



362

symmetrically arranged with respect to it. The values of the structural parameters
adopted in this work are given in Fig. 1. These are taken from the parameters of
similar molecules, namely vinyl formate®, divinyl ether®, methyl acetate®:”? and acetic
acid®.

Fig 1. Molecular structure of vinyl acetate.

VIBRATIONAL ASSIGNMENTS

Kotorlenko et al.? reported assignments for this molecule only from infrared
measurements. Feairheller and Katon® thoroughly studied the infrared and Raman
specira and reported 19 in-plane and 9 out-of-plane fundamental frequencies. The
missing in-plane frequency is dc.c_o2nd the one out of plane is the torsional frequency
due to methyl group.

McManis® studied the infrared spectra of series of vinyl esters and assigned
464 cm ™! to the 6c—c_o mode. Crowder* reported a similar value (465 cm™!) for this
mode in the case of vinyl trifluoroacetate. Assignments of the three lowest in-plane
frequencies of similar molecules are given in Table 1. We felt that we should reassign
the two lowest in-plane frequencies reported by Feairheller and Katon!. We have
assigned 462 cm™ ! to the 8c_c_o mode and 406 cm ™~ ! to the d_c-o mode. This means
that dc_o  has not been observed by Feairheller and Katon. The missing dc_o_c

TABLE 1
COMPARISON OF SOME IN-PLANE FREQUENCIES

Mode Methy! ccerate’? VinyI trifluoroacetare* Vinyl acerate

Ref. 1 This work
dc=c-0 — 464 —_— 462
Oc-c=0 429 356* 462 406
Sc—o-c 303 295 406 299

* Low value becanse of mass effect of CF, group.
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frequency is found to be 306-323 cm™! in aliphatic esters'®, 303 cm™ ! in methyl
acetate!! and 295 cm ™! in vinyl trifluoroacetate*. We have adopted the average value
299 cm ™! in our calculations.

The out-of-plane missing torsicnal frequency adopted in this work is 100 cm™
which is transferred from methyl acetate!2. In acetic acid this value is reported to be
93 cm~? by Haurie and Novak!® and 101 cm~! by Fukushima and Zwolinski'*.
The fundamental frequencies adopted in this work are given in Table 2.

1

TABLE 2
ADOPTED FUNDAMENTAL FREQUENCIES OF VINYL ACETATE (cm™?)

In-plane frequencies (a”)

1 3120 v.(CH>) 11 1353 o(CH)

2 3090 v(CH) 12 1291 v(C-C)

3 3040 v.(CH2) 13 1217 v, (COCO)

4 2996 v.(CH3) 14 1018 6(CH;) rock

5 2940 v.(CH3) 15 972 &(CHj) rock

6 1760 v(C=0) 16 847 v, (COO)

7 1644 v(C=C) 17 637 &(CO3)

8 1428 S(CH2) 18 462 8(C=C-0)

9 1382 3.(CH3) 19 406 8(C-C=0)
io 1370 5, (CH3) 20 299 3(C-0-C)

Our-of-plane frequencies (")

21 3020 v.(CHa) 26 712 7(CH>) twist
22 1428 J.(CH3) 27 583 y(CH3CO.)
23 1134 J6(CH,) rock 28 238 Skeletal def.
24 948 7(CH;) wag 29 160 Skeletal def.
25 874 7(CH) 30 100 Torsion (C—CH3)

THERMODYNAMIC FUNCTIONS

The ideal gas thermal functions C;, (H°— Hg)/T, S°, —(G°— Hg)/T have been
calculated using the moments of inertia obtained from the molecular parameters given
in Fig. 1 and the vibrational frequencies given in Table 2. The internal rotational
contributions of the methyl group to the thermodynamic functions have been obtained
using Pitzer and Gwinn’s tables!S. For this purpose the potential barrier height!®
was obtained from eqn (1)

o Vs Ve  9F
Ve = 7 —2- + vy ¢))
where F = h/8n3%cl,
h = Planck’s constant
¢ = velocity of light
I. = reduced moment of inertia
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As there is some uncertainty in the torsional frequency the internal rotational
contributions were calculated by varving the torsional frequency by +10cm™ 1. The
calculated potential barrier heights are 526, 623 and 728 cal mol ™! corresponding to
the torsional frequencies 90, 100 and 110 cm ™!, respectively. The maximum deviations
due to the uncertainty in torsional frequency are at lower temperatures and they are
+0.08, +0.04, +0.05 and +0.09 cal deg~ ! mol~! for C, (H°—HQ)[T, S° and
—(G°— H{)/T, respectively. This shows that the errors in the thermal functions are
very low owing to the uncertainty in the torsional frequency. The enthalpy of
formation, Gibbs energy of formation and logarithm of equilibrium constant of
formation as a function of temperature were calculated by the usual procedure. The
enthalpy of formation!” at 298.15 K was taken as —75.46+0.18 kcal mol~1. The
values of thermal functions of C!8:1°, H,2°, and O,%! in their reference states are
used. The calculated thermodynamic properties are given in Table 3.
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