Note

Enthalpies of mixing of some binary mixtures of thiazole

ROGER MEYER*, MONIQUE MEYER, D. BARES AND E. J. VINCENT Laboratoire associé au C.N.R.S., Structure et réactivité en série hétérocyclique, Faculté des Sciences de St.-Jérôme, Rue H. Poincaré, 13397 Marseille Cedex 4 (France) **(Received 13 August 1974)**

Molar excess enthalpies H^E of two sets of binary mixtures have been measured **as a function of composition_ The first set studied at 298.15 K is formed by solutions of thiazoIe in cyclohexane, benzene and thiophene. The second set studied at 3 IS_1 5 K is** formed by solutions of thiazole in hexafluorobenzene, oxazole and pyridine.

The values of H^E for the cyclohexane solutions were large and positive while **those of solutions of thiazole in the aromatic compounds were slightly positive or** negative. The last results support the presence of weak specific interactions between **the unlike molecules_**

EXPERIMENTAL

The calorimeter used was a C.R.M.T., it is isobaric and isothermic and it operates in the absence of vapour phase. Details of the apparatus, experimental method and calculation procedures have been described earlier^{1.2}.

Heats of mixing were determined at 298-15 and 318.15 K, all temperatures were measured **with a calibrated platinum resistance thermometer in terms of IFTS-68.**

The calorimeter was tested on reliabiIity and precision by measuring the heat of mixing of the system benzene+carbon tetrachloride at 318.15 K_ The agreement between our results and those published³ was satisfactory bearing in mind the average experimental uncertainty in H^E of $\pm 1\%$.

The samples of thiazole, oxazole (obtained from UGILOR) pyridine and thiophene were dried, distilled through 20 plates spinning band column stored over molecular sieve 4 Å out of contact with air in the dark. The hexafluorobenzene **obtained from the Imperial Smelting Corp. was distilled and stored over molecular sieve 5 A. The benzene and cyclohexane (Merck) for spectrophotcmetry were sufficiently pure for our purposes and were only dried over molecular sieve 4 A.**

Gas chromatography or freezing temperature measurements⁴ showed that all **samples used were better than 99 mol % pure.**

Both components were not degassed before use.

^{*}To whom all correspondence should be addressed.

For the systems thiazole + hexafluorobenzene, thiazole + oxazole and thiazole + **pyidine the enthalpies of mixing at 318.15 K were fitted by a least squares method in the** ec;uation:

$$
H^{E} = x_{1}(1-x_{1}) \sum_{i=1}^{n} A_{i}(1-2x_{1})^{i-1}
$$
 (1)

The values of the parameters A_i are given in Table 1. The experimental data are compiled in Table 2 with the standard deviation σ . Excess enthalpies of mixing of cyclohexane, benzene and thiophene with thiazole were measured⁵ at 298.15 K, they are listed in Table 3.

For each system x_1 represents the mole fraction of thiazole.

DISCUSSION

The heats of mixing are small and positive for the systems thiazole + hexafluorobenzene, thiazole + benzene, thiazole + oxazole and thiazole + thiophene. Those for the system thiazole + pyridine are small and negative while those for the thiazole + cyclohexane mixture are large and positive.

The positive and large H^E value for the last binary mixture can be attributed to the dipolar association of thiazole^{5.6} and to the dispersive forces between the unlike molecules. The presence of both $\pi-\pi$ and $n-\pi$ interactions between the azaaromatic molecules^{5,6,8} can explain the more important values of excess enthalpies beyond that of the homomorphic system thiophene $+$ cyclohexane⁵. For instance at 318.15 K in the system thiazole + cyclohexane:

for $x_1 \approx x_2$, $H^E = 1740$ J mol⁻¹; $(\overline{H}^E)^x = 10.2$ kJ mol⁻¹

in the system thiophene $+$ cyclohexane:

for $x_1 \approx x_2$, $H^E = 995.8 \text{ J mol}^{-1}$; $(\overline{H}^E)^x = 4.1 \text{ kJ mol}^{-1}$

The difference in the H^E values of the studied systems may be taken as fair evidence of the contributions of specific interactions **between thiazole and aromatic components.**

The abiiity of aromatic moiecules to form compIexes with various substances is well known $8-18$.

The thermodynamic studies of the mixtures pyridine + $C_6H_6^{9-12,17}$ and pyridines $+C_6F_6^{12,13,18}$ were interpreted recently in terms of a specific interaction between the unlike molecules. Our results confirm that pyridine is a better electron donor π than other aromatic molecules studied. In order to obtain information about the specific interactions, the partiai molar excess enthaIpie of mixing of thiazoie at infinite dilution $(\overline{H}^E)^{\infty}$ has been calculated (Table 4). The evolution of $(\overline{H}^E)^{\infty}$ for the thiazole mixtures is: $C_6H_{12} > C_6F_6 > C_6H_6$ > oxazole > thiophene > pyridine. This is

TABLE 1

VALUES OF THE LEAST SQUARES PARAMETERS IN EQN (I)

Mixture	л.	$A_{\rm 2}$	A_3	0 $(J \text{ mol}^{-1})$ $(J \text{ mol}^{-1})$	$\sigma_{\rm m}$ [*]
Thiazole + C_6F_6	3978.6	-1149.3	53	8	12
Thiazole + oxazole	973.3	247.9	-15	5.4	9
Thiazole \div pyridine	-239.3	-60.5	-8.5	1.2	2.3

 $\star \sigma_{\rm m} = \max (H^{\rm E} - H^{\rm E}).$

TABLE 2 EXCESS ENTHALPY H^E OF THIAZOLE(I) AT 318.15 K

 ${}^{\star}\sigma = (\Sigma H^{\pm}(\exp.) - H^{\pm}(\text{calc.})/m - n)^{1/2}$, where $m =$ number of measurement, $n =$ number of parameters into eqn (1).

 $\overline{}$

TABLE 3

EXCESS ENTHALPY H^E OF THIAZOLE(I) AT 298.15 K

TABLE 4

PARTIAL MOLAR EXCESS ENTHALPIE AT INFINITE DILUTION $(\overline{H}^{\epsilon})^x$ OF THIAZOLE AT 318.15 K

due to the decrease of dispersive forces and arises from specific interactions between the unlike molecules.

Like Otin et al.¹⁵ we can assume that the partial molar excess enthalpy of thiazole at infinite dilution is made up of different contributions for example:

(a) in cyclohexane:

$$
(\overline{H}^{\mathsf{E}})^{\infty} = (\overline{h}^{\mathsf{E}})_{\text{disp}}^{\infty} + (\overline{h}^{\mathsf{E}})_{\text{auto}}^{\infty}
$$

(b) in aromatic solvants:

 $(\overline{H}^{\mathsf{E}})^{\infty} = (\overline{h}^{\mathsf{E}})_{\text{disp}}^{\infty} + (\overline{h}^{\mathsf{E}})_{\text{auto}}^{\infty} + (\overline{h}^{\mathsf{E}})_{\text{spec}}^{\infty}$

214

where $(\bar{h}^E)_{\text{disp}}^{\infty} =$ dispersion contribution;

 $(\bar{h}^{\rm E})_{\rm auto}^{\infty}$ = autoassociation contribution;

 $(\overline{h}^{\mathsf{E}})_{\text{spec}}^{\infty}$ = contribution due to specific forces.

The term due to dispersion forces can be calculated by different methods^{14.15.19.20}.

Theoretical interpretation will be presented at the completion of **this series** of measurements.

REFERENCES

- I M. Cotten. F. Camia and M. Laffitte. **Breret No. 1527, 186** *C_:V_R.S_,* **(196%).**
- **2** D. Bares, M. Soulie and J. Metzger, *1. Chim. Phys., 10* **(1973) 1531_**
- 3 M. B. Ewing, K. N. Marsh, R. H. Stokes and R. P. Tomlins, *J. Chem. Thermodyn.*, 2 (1970) 297.
- **4** R. Meyer **and J.** Metzger. Bull. Sot. Chinr. *Fr., I (1967)* 66.
- 5 D. Bares and J. Metzger, *J. Chim. Phys.*, 10 (1973) 1540.
- **6** R. Meyer and J- Metzger. *BuiI_ Sot_ Chim. Fr., 5 (1967) 1718.*
- *7 H. V. Kehiaian, Chem. Soc. Ann. Meet., Symposium on the Physical Chemistry of Weak Complexes,* Exeter, I967_
- 8 M. L. Mac Glashan, L. D. Stubley and H. Watts, J. Chem. Soc. (A), (1969) 673.
- 9 K. Amaya. *Bull. Chem. SOL, Japan, 34* (1961) **12Sf.**
- **10** T. Murakami, S. Murakarni and R. Fujishiro. *Bull. Chem. Sot., Japan. 42 (1969) 35.*
- *11* **P.** R. Garrett, J. M. PolIock and K. W. Morcom. I. *Chem. Thermodyz., 3 (1971) 13.5*
- *I2* D. A. Armitage and K. *W.* Morcom, *Trans. Faruday Sot., (1969) 688.*
- *13* **R.** Meyer, A. Barlatier and J. Metzger, *I. Chim. Phys., 68 (1971) 417.*
- 14 **H. V. Kehiaian, K. Sosnkowska-Kehiaian and R. Hryniewicz, J. Chim. Phys., (1971) 922.**
- *15 S.* Otin, M. Gracia and C. Gutierrez Loss, *1. Chim. Phys.. 9 (1973) 1227.*
- *16* Hiroyuki Ukike, Reiji Tanaka, S. Murakami and R. Fujishiro, *I. Chem. Thermod;i-n., 6 (1973) 201.*
- *17 W.* Woycicki, *J. Chenr. Thermodp., 6 (1974) 141.*
- IS R. Meyer, M. **Meyer** and **J. Metzger,** *Thermochim. _4cra, 9 (1974) 323_*
- *19* J. A. Barcker and F. Smith, *J_ Chem. Phys., 22 (1954) 375.*
- 20 M. L. Huggins, *J. Phys. Chem.*, 74 (1970) 371.