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ABSTRACT 

The present paper is concerned with experimental techniques for conducting 
accurate temperature-time measurements in a semi-adiabatic reaction calorimeter. 
In addition, mathematical methods are presented which make it possible to derive 
reliable values for the activation energy and the frequency factor from the observed 
temperature-time relation_ 

1 I?JTRODUCIION 

In a previous paper’ we discussed a simpIe method to obtain the activation 
energy E and frequency factor 2 of chemical reactions from an analysis of the 
temperature-time eJrve observed in adiabatic batch experiments_ The method in 
question applies to cases in which the reaction rate can be represented by an expression 

of the type 

U(c, T) = Zc” exp 
( > 

- f 0) 

where T, = E 

In perfectly adiabatic systems the rate of temperature change then is given by the 
non-linear differential equation 

dT 
-=Z,,(T,-T)“exp 
dt 

satisfying the initial and final conditions 

t=O; c=co; T = To 

t=co; c=o; T=T,=T,+%, 
CP 

(2) 

iW 



while ZS is a modified frequenfzy factor: 

Equation (2) can be transformed into an Arrhenius-type relation 

dT 

where k,, = 
dr 

(L-T)” 

(3b) 

(4b) 

is a pseudo reaction rate constant. From the iinear relation between In k, and l/T, 
the kinetic constants Z,, and T, can be evaIuated_ A typic4 example is presented in 
Fig. 3 of our previous paper I, relating to the homogeneous decomposition of hydrogen 
pero_xide in acid solution’_ The modified Arrhenius pIot shown in this graph is based 
on measurements conducted in a simpIe Dewar calorimeter3*4. 

Apart from the restrictive assumptions introduced in the derivation of the 
differential eqn (2), the applicability of the above method largely depends on the 
availability of a reliable value for the ma~mum adiabatic reaction tern~~~re T, 
and on the possibility of deriving accurate dT/dt values from the experimental T, 1 
curve. The effect of Tm on the shape of the modified Arrhenius plot is clearly illustrated 
in Fig_ 1, where the straight line represents the relation between In k, and l/T for a 
first-order reaction (n = 1) with T, =9000 K and Z, = 5.0 x IO’ * set- ‘_ With these 
values of n, T, and Zr , and with T, = 300 K, we can cafculate from eqn (2) a series 
of dlydr, Tvaiues to simufate a set of experimenta data. Taking these dT/dr, Tvalues, 
bur using T, vaiues which differ sIightIy from 300 K, the vaIues of In k, calcuiated 
from eqn (4b) are found to deviate considerably from the straight line. In Fig. 1 the 
upper and lower curve represent the variation of In k, with I/T for T, = 299.8 and 
300.2 K, respectively. NaturaIly, a linear fit of these curves in the temperature range 
between 280 and 298.5 K woufd Iead to erroneous values for the kinetic constantsr 

2PP.S 97x.3 7.52 x 10” 5x Io-s 

XaO !moo.O 5*00x 10” - 

3002 8365.5 537 x IO’O 4x ICI-~ 

This example indicates that the uncertainty in T,-and, consequently, in the 
temperature measurements-should preferably be less than 0.01 K in order to obtain 
satisfactory results from the modified Arrhenius plot, The same concfusion is reached 
with regard to the caIcuIation of dT!dz vaIues_ The subsequent sections are therefore 
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Fig_ l_ The effect of T, on the shepe of the modifkd Arrhenius plot (upper curve: T,,, = 299.8 K: 
middk curve: T, = 300.0 K; lower curve T, = 300.2 K). 

mainly concerned with experimental means to improve the accuracy of the temperature 
measurements and with mathematical techniques to derive reliable vahres of T, and 
2, from the observed T, I curve. In addition, two different methods are sugested to 
obtain accurate results from essentially non-adiabatic measurements. 

2.1 The model reaction 
The liquid-phase model reaction used to explore the properties of the reaction 

caIorimeter is the acid-catalyzed conversion cf methyloxirane (propylene oxide) into 
propanediol (propylene glycol): 

CH, CH, 
I H+ 1 

HC 

I’0 

fH20 - CHOH (5) 
I 

HZ& &i20H 

This moderately exothermic hydrolysis reaction (Aff = -89.18 kJ mol- 1 (refs. 58)) 
has been studied by several investigators ‘-’ I VaIues for the activation ener_g and _ 

the frequency factor have been reported by Long and Pritchard’ ‘-14 (for aqueous 
solutions) and by Furusawa et 31. ’ 5 (for mixtures of- water and methanol). 
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In a wide range of conditions with regard to the acidity and the water content 
of the reacting mixture, the reaction rate is found to be of the first order in methyl- 
oxirane (MO), proportional to the H’ concentration and independent of the Hz0 
concentration: 

u = _ d(-MO) 
dr 

= k, [MO) = k2 (Hi) (MO) ; k, = k,(H+) 

k, =Z,exp 

(6) 

2, = Z,(H’) 

From the literature data the fol!owing vaIues for the activation ener,oy temperature 

T,, the second-order frequency factor Zt and the second-order rate constant k, 

(at 25°C) are obtained: 

Zt kz 
0 mol- * see-‘) (I mol- x set *) 

Long and Pritchard I =-‘* 
Furus=a et aLrs 
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2.2 The reaction calorimeter 
The reaction calorimeter (Fig. 2) used for ! he present measurements is a 

modified version of the apparatus described by Pritchard and Skinner3. The ca!ori- 
meter consists of a 1.5-l dewar vessel A, provided with perspex baffles, a thermocoax 
heating coil for calibration purposes, a pH-electrode and a perforated perspex cover B_ 
The dewar is immersed in a thermostatic bath, the temperature (TJ of which can be 
kept constant within 0.01 K_ 

The dewar is partially filIed Gth an aqueous soiution of methyloxirane, w_hile a 
solution of suEn-ic acid is contained in compartment C of a cylindrical tube and 
enclosed by two teflon pistons D. The pistons are kept in place by a piston-rod, which 
is firmly atcached to the perspex cover, while wall E of the tube can be moved up and 
down. By lifting this wall, the acid solution rapidly fiows into the methyloxirane 
solution; further mixing is achieved by means of a flat-blade turbo-stirrer F 
(1500 rpm). 

The temperature of the reactin, 0 mixture is recorded digitally at equidistant 
times by means of a Hewlett-Packard quartz-thermometer T1 (calibrated within 
0.001 K at the Netherlands Service of Metrology, The Hague) with an HP-2580-D 
sensor. This instrument determines the time-averaged temperature of the reaction 
mixture in each of the successive time intervals. The accuracy of the temperature 
measurements depends on the Iength of the intervals s&Wed for the reaction system 
under consideration; it may vary from 0.01 K (for intervals of 0.1 set) to 0.0001 K 
(for intervals of 10 set). Most measurements have been conducted wi+h the O.OOI mode. 
Temperature sensors Tz and T, are diodes, developed in our institute, which serve to 
check the temperature difference between the separated solutions before starting the 
reaction; the accuracy of these sensors is of the order of 0.01 K. 

The calculation of the kinetic constants T, and 2, from relation (4a) is based on 
the assumption that the chemical reaction is the only heat source or sink. However, 
a more realistic heat balance for the reaction calorimeter sketched in Fig. 2 should 
aIso invoive the production of heat by stirring and the exchange of heat between the 
caIorimeter and its surroundings: 

cpz= QU+ W,-hA(T-TJ 

The magnitude of the last two terms in eqn (7) has been estimated from the vziation 
of Twith t in non-reacting systems. The heat balance then reduces to 

$$_&+TJ (8) 

and the quantities WC,, and hA/c, can thus be obtained from the linear relation 
between dT/dt and T- T, . The average values from 18 measurements were found to be 

WC, = (4.3+0.5) x 10s4 K set-’ 

hA/cp = (1.7+0.3)x lo-’ set-’ 
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Since the average rate of temperature rise due to chemical reaction is of +%;- 
order of O-03 K set- I, we conclude that the “non-adiabatic” terms in eqn (7$ 
represent relativeIy small effects_ In the final part of the T, f curve, however, they inag 
become of importance because of the decreasing reaction rate_ The ultimate effect og 
these terms on the values obtained for T, and 2, wiii be illustrated in Section 3 b$ 

means of computer calculations simulating actual experiments. _I. rz 
$?; 

2_3 iVwn2ricai 2slimtiZion ofz2mperarwe deriualiLy2.s 
:gT 
:-< 

The calculation of T, and 2, via eqn (4a) and of IV&, and hA/c, via eqn (S$ 
requires accurate values for dT/dt as a function T. For the present purpose th$ 
classical methods for the numerical caIcuIation of derivatives (Newton, Stirlingr6$ 
are not particulariy suitable. With these methods, even minor uncertainties in th&i 
measured T, t relation may give rise to unacceptably Iarge errors in the calcuIate~ 
dT/dt values”; in fact, a loss of two or three significant figures is not unusual_ E 

We therefore preferred to use the so-called method of spIines’8*1g, which i& 
based on the following procedure_ Let us consider a series of successive temperature&f 

T,, Tz, T3r ---7 T, measured at (equidistant) times I,, t,, ts, _ _ _, t,,. Witbin each 06: 
the successive intervals we now assume that the reactor temperaturevaries as a functio& 

of time according to 

T(t) = +,+a, t+a, t’+a, t3 ww 

wi?Jl 

dT 
- a, +2a,t+3a3t2 

dt- 
and 

d2T 
- = 2az+6a3i 
dt= 

For ezch of the time intervaIs the coefficients in eqn (IOa) are determined by the 
conditions that function T(t) as well as its first and second derivatives must be 
continuous at the trausition of successive intervak. By means of a recursive procedure 
one then obtains a smoothIy varying function, which covers the entire temperature 
range from TX to T, and provides accurate vaiues for the first and second derivatives 
at any point of the T, t curve. 

Reinschzo applied the method of splines to input data subject to random errors. 
The algorithm developed by this author is used in our present calculations and resuhs 
in a narrow band (rather than a singIe curze) for dT/dt as a function of T. Starting 
from input data with a r&tive error of about loss (and corrected for the Aatively 

slow response and the slight non-linearity of the quartz temperature sensor), the 
accuracy of the derivatives is found to be about IO-*. The cakulations were carried 

out on the CDC-cyber-73-28 digital computer at SARA (Stichting Academisch 
Rekeneentrum Amsterdam), using an AlgoJ-50 programme. 

3 ADLaBATIC TREATMEXT OF X0X-ADIABATIC DATA 

In Section 2.2 we observed that the reaction calorimeter used for our measure- 
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menls is not a perfkctly adiabatic system. The calcuIation of T, and Z,, on the other 
hand, is based on the validity of eqn (4a), in which terms like W, and hA (T- T,) have 
not been taken into consideration_ We must therefore investigate as to how Far the 
values of the quantities 7’, and 2, are a&cted by the use of essentially non-adiabatic 
data in conjunction with a strictly adiabatic model. To this end we assign rezdistic 
vafues to the parameters in the coupIed differential equations 

dT Q dc W, 

dt= 
--- _- + z(T-TJ and $= 

cP dt cP cP 
(11) 

which represent the behaviour of the reaction alorimeter described in Section 2.2 for 
an irreversible first-order reaction. These non-linear equations are then inte,orted 

numericaIIy with the aid of a standard Runge-Kutta programme’ I_ The T, t relation 
obtained in this way can be subjected to random noise and used to simulate a set of 
experimental data. 

From these non-adiabatic data we now recalculate the kinetic constants T, and 
2, according to the methods outlined in the preceding sections, which implies the 
applicability of “adiabatic” eqn (4a). For “experimental” data based on the para- 
meter values: 

T, = 9.100 x lo3 K Qlc, = 1.833 x 10’ kg K mol- ’ 

Z1 = 1.650x 10” set-’ w&I = 4.300 x lo-’ K set- ’ (12a) 

hA/cp = S.CUKl x 1O-5 set- * 

we find from adiabatic fits at two different initial concentrations: 

To = 278 K To = 278 K 

CO = 1.0 mol I-’ co = 2.0 mol l- ’ 

(125) 
T, = 8-93 x IO3 K T, = 9.17 x lo3 K 

2 1 =09’,x101’ set-’ _ _ z, = 2.22 x 10” see-’ 

An analysis of these resuhs indicates that the discrepancy between the 
“adiabatic” values in (12b) mainly originates from the difference in reaction time. At 
the Iower initial concentration it takes much more time to attain essentially compkte 
conversion than at the higher initial concentration. Since the relative importance of 
the two smaI!er terms in eqn (I I) varies in the course of the reaction, it is ckar that 
the combined effect of these terms on T, and 2, will depend on the total length of the 
reaction time. 

This difEculty might be overcome by constructing a reaction calorimeter in 
which the rate of heat production by stirring is compensated continuousiy by the rate 
of heat removal due to heat transfer to a cooIing medium of variable temperature: 

W,-hA(T-7”) = 0 or T(t)-T=(t) = z = constant (13) 
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A reaction calorimeter designed to operate with a constant temperature difference 

between the reacting mixture and the cooling medium is now being tested. The results 

obtained with this quasi-adiabatic apparatus will be reported in a forthcoming 
publication_ 

It should be noted, however, that the vaiues of T_ in (12b) differ from the correct 

value in (12a) by less than 2%. With the presently available equipment and techniques 

for data processing, the adiabatic treatment of non-adiabatic data thus leads to the 

same degree of accuracy as obtained with the conventional isothermal methods. 

4 X0X-LIXEkR REGRESSION PROCEDURE 

The tremendous effect of the T, values on the shape of the modified Arrhenius 

plot made it desirabIe to investigate the applicability of more sophisticated regression 
methods, which provide reliable values for T, and 2, as well as for T,_ One such 

method is based on the Iogarithmic form of the differential eqn (2), viz. 

hdT --pZ&n(T*-T)-s 
T 

(14) 

or 

y =A+n In (B-xx,)-Cx2 (Isa) 

where 

y =IndT 
dt 

x1 =T 

loo0 
x2=- 

T 

According to ‘Lhe Ieast squares method, the most appropriate values of the 

parameters A, B and C must satis@ the condition 

A=InZ.=InZt(n--l)Inz 

B = T, 

C=T’ 
1000 

Cl=) 

f(A, B, C) = C (y-A - n In (B -x1) f Cx,)’ = minimal 

resuhing in the normal equations 

Zy--pA-nnZin@-x,)-f-CCx= =0 

(16) 

(i7a) 

&.L_Ap.L_ np (B--x,) f c&3__ = 0 

B-x, B-x, B-x, B-x, 
U7W 

~~,p--AEx,--nXx~ In (i3-x,)+CCx$ = 0 (17c) 

where the summation is carried out over the number of observations (experimental 
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points) p_ This system of three equations with three unknowns (viz. A, B and C) may 
be solved via a three-dimensional Newton-Raphson iteration procedure, which 
requires adequatte starting values for the parameters in Z,, T, and T,. Since s&i- 
ciently accurate starting values for In 2, and T, may not be avaiIabie, it seems 
reasonable to take advantage of the fact that the normal equations are linear in A and 
C. Thus, from (17a) and (I~c), the quantities A and C can be expressed as functions 
of B: 

A = a+b,Cln (B-x1)-bZCx, In (B-x,) 

C = c+bzCln (B-x1)-b3Cx2 In (B-x,) 

where 

a = c=,)~x,Y)-~x:,~Y~ ; 

(xX2)2-pCxf 

bI = 
n Xx$ 

FX$--pzxjf ; 
bz = 

n cx, . 
(zx2y-pPx; ’ 

b3 = “’ 
c=212 - P=: 

For a given set of experimental T, t values (and calculated dT/dt, T values) the 
quantities a, c, b, , b2 and b3 are constants, which can be obtained from the measured 
temperature-time relation. On substituting (18a) in (17b) we find: 

f(B)=B-&- nCln(R-xt) aC 1 -+c~LL__ 
- 1 B-x, - B-x, B-x, 

C In (B-x,)+b2 E In (B-x,)+ (19) 

Xx, In (B-x,)-b, Cx, ln (B-x,) = 0 

The problem has now been reduced to a sir&e non-linear equation in B, which 

can be solved by means of a one-dimcnsionai Newton-Raphson procedure: 

Bi = Br-r +m, with i = 1, 2, 3, . . . . . . 

and 

f(BJ = f(Bi-r)+f’(B,-r)-bB, =O, where bbi=- f(Bi-X) 

f’(Bi- 1) 

In order to obtain rapid convergence of successive bB values, an acceptable 
starting value (B,,) should be available- Since T, is the limiting reaction temperature 
for t + co, the T, value estimated by direct extrapolation of the experimental T, t curve 
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may not be Mcientiy accurate_ In that case a reliabIe starting value for B, can be 

obtained in the fo!Iowing way_ 

At reaction temperatures in the vicinity of T,, the reaction rate depends aimost 

entireIy on the vanishing reactant concentration, whereas the temperature dependence 

is no longer of importance. Sufficiently close to T,, we may therefore replace eqn (2) 

by the simpler expression 

dT 
- 21 Z,(T,-T)nexp 
dr 

for TN T, (20a) 

where 

k,=Z,exp -$ 
( _) 

(2Ob; 

is the limiting value of rate constant k,, for T-+ T,_ From eqn (20a) we observe that 

the fnaI part of the dridf, T curve can be represented by a straight line for n = I 

(Grst-order reaction) and by a parabola for n = 2 (second-order reaction)_ An example 

of the appIicabi!ity of approximation (20a) is shown in Fig. 3 derived from the final 

part of a T, I cume for the adiabatic hydrolysis of methyloxirane in acid solution. 

Fig 3. The approximation of T, by cqn (2Oa); the fitted mhe for Tm is 293.1 IS K, while the regrcs- 
sion procedure in cqn (19) gives 293.120 K. 

FtESLTLTS A?CD DLSCUSSIOS 

With the reaction calorimeter described in Section 2.2 a number of experiments 

have been conducted in which the hydrolysis of methyoxirane (Section 2.1) served as 

the model reaction_ The measured T, t relations were converted into dT/dt, Trelations 

by means of the methods mentioned in Section 2.3 and the latter data were then 
subjti to the regression procedure outlined in Section 4. From two sets of 15 
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experiments wit& an initial temperature of about 278 K, a pH of about 1 .O and initial 
reactant concentrations of about 1 .O and 2.0 mol I- ‘, respectively, the average 
values of T, and Z, and of the second-order rate constant k, are found to be: 

go1 I- *) 
zzx lo-‘2 kz (25°C) 
(l mol- ’ se~-~) (l mol- I see- ‘) 

set I 1.0 8926f42 1.02 f 0.30 0.102f0.016 
set II 20 9167f37 1.56-LO.40 0.069 f 0.009 

In view of the high reactant concentrations involved, the accuracy of the results 
at one given initial concentration is quite satisfactory. As already noticed in Section 3, 
however, the discrepancy between the values of T, and Z, at different initial con- 
centrations constitutes a serious limitation of the adiabatic treatment of non-adiabatic 
data. This limitation becomes more severe if the final part of the T, t is completely 
included in the set of experimental data. 

A possible experimental solution of this problem has already been suggested in 
Section 3. Meanwhile, we are also working on a mathematical treatment, which is 
based on the complete differential eqns (11). Introducing acceptable starting values 
for the parameters in (12a), one can integrate these equations numerically and 
determine the sum of the squares of the differences between the experimental and the 
calculated reaction temperatures at a given set of t values. By means of a suitable 
iterative procedure, an improved set of parameter values is then obtained and with 
these values one again integrates eqns (11) and determines the sum of squares. This 
procedure is continued until the sum of squares attains its minimum value. A com- 
puter programme performing these calculations is presently being tested. 

The present investigations are conducted with financial support from the 
Netherlands Organization for the Advancement of Pure Research (Z.W.O., The 
Hame). 

NOMENCLATURE 

heat-transfer surface area 
concentration of key-reactant 
initial concentration of key-reactant 
average volumetric heat capacity 
energy of activation 
overall heat-transfer coefficient 
pseudo reaction rate constant near r_, eqn (20b) 
pseudo reaction rate constant, eqn (4a) 



reaction order 
heat of reaction (positive for exothermic reactions) 

gas constant 
time 
absolute temperature of reacting mixture 
initial temperature of reacting mixture 

activation-enei_gJ temperature, eqn (1) 

ambient temperature 
maximum adiabatic reaction temperature, eqn (3a) 
reaction rate 
heat of stirring 

frequency factor, eqn (1) 
modified frequency factor, eqn (3b) 
standard deviation 
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