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Abstract 

The dynamic behaviour of the measured signal of a power compensated DSC is studied 
in terms of linear response taking into account the measuring system, the sample, the 
reference, the control circuits, the heat transport coefficients and the heat losses. 

As a result it is shown that the apparatus (or Green’s) function of the DSC (including 
sample and heat transfer) is different from that necessary to desmear the sample heat flow. 

The quality of the extracted Green’s function is discussed for different measuring 
conditions. 

INTRODUCI’ION 

To obtain information about the real thermodynamic functions of a 
sample from a DSC curve it is necessary to think about the smearing of the 
signal by the apparatus. In the case of DSC it is not easy to get a correct 
Green’s function (or “apparatus function”) to desmear the measured 
curves, because it depends both on the apparatus and on thermal properties 
of the sample under investigation. To describe the influence of the 
temperature profile inside the sample, different kinds of thermal effects 
must be taken into account [l]. 

Elsewhere [2] a simple model has been given to quantitatively describe 
the influence of heat transfer inside the DSC furnace and from the sample 
itself on the shape of the measured signal. The model is based on the 
analysis of the signal flow including the heat flow and the temperature 
profile in the complex system DSC furnace-sample. A proposal to correct 
the measured curves with the aid of linear response theory is given. 

Let QOUt be the measured heat flow rate, @in the theoretical heat flow rate 
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of an infinitely thin sample which is coupled to the furnace with an infinitely 
small heat resistance and G the Green’s function containing all dynamic 
properties of the system DSC-sample; then the convolution product 

@out(t) = 1’ G(t - Z)@in(r) dr = G(t) * @in(t) (1) 
0 

describes the smearing of @in by the heat transfer within the furnace and the 
sample and by other relaxations (e.g. from electronics) of the DSC. 

The heat transport and relaxation processes in the measuring instrument 
and the sample cause the smearing of the signal. Similar influences may 
originate from electronics. We term all these smearing processes collec- 
tively ‘dynamic processes’. They are characterized by the Green’s function. 
An instrument without any dynamic processes (no smearing) has a Dirac 
a-function as Green’s function G = s(t). The Laplace transformed Green’s 
function is then g = 1. In this rather uncommon case, the measured function 
@‘,,t is identical with thermal event of the sample fin. 

In order to desmear a DSC curve we need the solution of this integral 
equation. Thus the Green’s function G must be known. One idea is to 
extract the Green’s function from the response of the measured curve on 
switching the heating rate (/? = dT/dt) on an off, for instance at the 
beginning or at the end of the scan. It is also possible to interrupt the scan in 
between to get this information. 

As a change of the temperature profile needs time after the scan rate was 
switched from zero to the rate in question or vice versa, there is no sharp 
step in the heat flow as expected from the equation 4 = m - c, - p (with 
/3 = 0 at t < to and p = const. at t > to, see Fig. 1). It is possible to extract a 

I 

to 
time 

Fig. 1. Schematic behaviour of heat flow rate curves after switching-on the scan rate (1, 
measured smeared curve; 2, theoretical, unsmeared curve with @ = m . C,(T(t)) . p; to is the 
moment at which the heating rate changes from zero to p). 
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Green’s function from the heat flow change at this parts of the DSC curve. 
On condition that there is only a negligible change of the material 
properties (specific heat capacity cp, density p, thermal conductivity A) 
during the temperature scan this Green’s function can be used to desmear 
the total DSC curve. In other cases the DSC run may be cut into parts by 
interrupting the scan several times in between. The advantage of this 
method is that the Green’s function can be extracted directly from every 
DSC curve under investigation. 

However, this simple model only describes the behaviour of one furnace. 
Thereby the dynamic behaviour of the reference, the second furnace and 
the control circuits of the power compensated DSC are neglected [2]. To 
investigate the influence of these parts of a power compensated DSC on the 
measured curve and on the extracted Green’s function, a model of the 
signal flow network in the whole DSC will be discussed in terms of linear 
response theory (the mathematical background is given in ref. 1). The 
proposed algorithm is restricted to power compensated DSC, because the 
description takes into account only the fluxes (no potentials are necessary 
as is the case for heat flux DSC). The resulting eqn. (10) allows us to 
describe the influence of sample, reference, both furnaces, heat losses and 
control circuits on the dynamics of the measured DSC curve. 

From this equation the problem of baseline correction and the extraction 
of the Green’s function from the DSC curve under investigation will be 
discussed. Problems concerned with the influence of thermal effects inside 
the sample and applications will be presented in subsequent parts of this 
paper. 

THE MEASURING SYSTEM 

The measuring system of a power compensated DSC is shown 
schematically in Fig. 2. The main parts are two symmetric furnaces which 
are located inside an isothermal surrounding (isoperibol DSC [3]). 

Two separate control circuits guarantee firstly that the mean temperature 
of both furnaces strictly follows the programme temperature (Tp) with the 
actual rate p, and secondly that the temperature difference (AT = Ts - TR) 
between the furnaces is minimized. Differences result from the different 
heat capacities of sample and reference (including thermal effects inside the 
sample) and asymmetries of the furnaces (strongly dependent on tempera- 
ture). This is compensated with the aid of an additional power input to the 
furnace with the lower temperature. As the second control unit works as a 
proportional controller, the remaining temperature difference (control 
deviation) is proportional to the difference of the heat capacities of sample 
and reference supposing absolutely symmetrical furnaces. This temperature 
difference is used as measuring signal. 
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I TS - TR ----- AT - controller 
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Fig. 2. Schematics of the furnaces and the control system of a power compensated DSC. T,, 
temperature of the sample furnaces; TR, temperature of the reference furnace; Tp, 
programme temperature (set value). 

The temperature sensors and the heaters are PtlO resistors. A change of 
the function as a sensor or as a heater is possible by a special electrical plug 
which exchanges the 
discussed below. 

THE SIGNAL FLOW 

To investigate the 
both furnaces and all 

connections [4]. The influence of this change wiil be 

influence of both substances (sample and reference), 
control units on the measured curve, it is necessary to 

describe the total system response of a power compensated DSC including 
dynamic processes. One possible way to do this is to consider the signal flow 
in terms of linear response theory. Parts of the measuring system which 
have an influence on the signals are called transfer elements (e.g. heat 
transfer paths, heaters, sensors, control units and combinations of them). 

To perform an analysis of the influence of the transfer elements on the 
measured curve the power compensated DSC must be idealized as a 
“linear” system. Then the behaviour of the transfer elements can be 
described with the aid of their Green’s functions. 

As the measuring system of a power compensated DSC is a rather 
complex one, the discussion of it is split into three steps: (1) description of 
the signal flow neglecting the influence of the AT-control unit (no power 
compensation); (2) extension of the model by power compensation; (3) the 
influence of an exchange of the position of heater and temperature sensor 
within the furnace. 
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Signal flow without power compensation 

Firstly we will discuss the dynamic behaviour of a DSC without power 
compensation. The corresponding signal flow circuit is shown in Fig. 3. The 
Green’s functions of the transfer elements are called Gik. The index i 
characterizes the furnace type (1, sample; 2, reference). The second index k 
illustrates the part of the furnace in question (1, lower part of furnace; 2, 
upper part of furnace). Gs or GR stands for the Green’s function of the 
sample and the reference, respectively. G,, characterizes the heaters and GA 
the control unit for the average temperature (see Fig. 2). 

The physical properties influenced are energy fluxes, for which the 
generally used symbol is Y. The subscripts of Y have the following 
meanings: I, input (scanning programme); h, electrical power (heater 
input); 1, heat flow in the bottom part (between heater and sensor) of 
furnace 1 (sample); 2, heat flow in the bottom part (between heater and 
sensor) of furnace 2 (reference); lL, losses of furnace 1; 2L, losses of 
furnace 2; S, unsmeared (theoretical) signal of the sample (the heat flow of 
an ideal, infinitesimally thin sample which is coupled to an ideal furnace 
(scanned with rate /3) with zero heat resistances); R, unsmeared (theoreti- 
cal) signal of the reference; m, measured signal. Superscript c refers to a 
smeared quantity. The losses describe the thermal losses and differences 
between a real DSC and a true linear system. 

Y2L 

Fig. 3. Scheme of the signal flow in a DSC without power compensation. Key: G, Green’s 
function; Y, energy flux. I, input (scanning programme); h, electrical power (heater input); 
1, heat flow in the bottom part (between heater and sensor) of furnace 1 (sample); 2, heat 
flow in the bottom part (between heater and sensor) of furnace 2 (reference); lL, losses of 
furnace 1; 2L, losses of furnace 2; S, unsmeared (theoretical) signal of the sample (the heat 
flow of an ideal, infinitesimally thin sample which is coupled to an ideal furnace (scanned 
with rate /3) with zero heat resistances); R, unsmeared (theoretical) signal of the reference; 
m, measured signal. Superscript c refers to a smeared quantity. 
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Factors which are necessary to convert one quantity into another are 
thought of as a part of the Green’s function in question. The operator 
symbol * stands for the convolution integral (eqn. (1)). 

In terms of linear response the smeared output signals of the furances are 
due to (see Fig. 3) 

Y?= Y,-yyy*G**Glh-Y;-Yl,)rc,, cc 
and 

WC,= Y,-y';ly;)*GA*G,2-Y,-Y2,)*G21 cc 

(2) 

(3) 

Hence we obtain for the smeared measured signal 

- (‘I-G * G,, - % * Gx) - (‘L * G,, - y’u * G,) 
As can be seen the output signals from both furnaces 
mean temperature controller. 

(4) 
are coupled via the 

To discuss the influence of the measuring system on the measured signal 
we have to eliminate YF and Y; in eqn. (4). This is done after Laplace 
transforming [l] eqns. (2) and (3). The transformed functions are 
characterized by lower case characters. The convolution integral transforms 
into a normal product (convolution theorem) [l]. From eqns. (2) and (3) we 
obtain 

or 

respectively. 
To obtain I& we rearrange eqn. (6) 

e;=(kf) gAg& - l(lCR& - IC1xb2 

with 

(5) 

(6) 

(7) 

b, = 
g21 

1+ Fg2,g21 
After combination of eqns. (5) and (7) and some algebraic calculations we 
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obtain 

-. 

(8) 

with c2 = $g,g,,b2 and d, = $gAglhgll. 
For $J$ we obtain by analogous changes 

2&U - 4 d&l g21 
ttfH=3/1 

1 + d,(l - Cl) 
+ w + JIld 1 + d,(l - c,) 

-of& + 4fZL) 1 + d,(l - c,) 

(9) 

with 

b, = 
g11 

1+ t+hgll 

and 

For the measured signal $2 (Jl; is the difference between $: and $13 we 
obtain as the final result of this approximation 

9: = $I& + (G + ~z_)hz - ($cS + (GI& (10) 

or 

J/L = It&, - ($3, - i/4&) - t~~=~, - ~2~~~) W 

with 

hD= 

2dl(l - c2) 2d,(l - 4 

1 + d,(l -c,) - 1 + d2@ - 4 

h, = 
g11 d2b, 

1. + d,(l - c,) - 1 + d2U - Cl) 

and 

h, = 
d,bz gzi 

1 + d,(l - c,) - 1 + dz(1 - c,) 

To explain eqn. (11) we will first discuss a measured curve without any 
dynamic processes (deviation from steady state). In this case we can 
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neglect the influence of the heat transfer and control units on the measured 
signal (Fig. 3). No smearing effects occur, i.e. +; = $j and hi = 1 (with 
j = R, S and i = 1,2). Equation (11) thus is reduced to 

(CIrn = -(Icls - (CIR) - (h_ - (cIzl_) (12) 
Equation (12) describes an ideal calorimeter. The measured signal is only 

falsified by the heat losses (el,_; I&J of the furnaces. These losses are all 
heat fluxes from the furnace to the surroundings. In the case of 
reproducible heat losses the normal baseline correction results in the exact 
difference of the heat fluxes into the sample and into the reference (see 
below). 

We can see from eqn. (11) that there is always a smearing of the 
measured signal in the case of any additional dynamic thermal processes 
inside the sample during the scan. As the Green’s functions depends on 
parameters of the sample-furnace system in a very complicated manner, 
there is no easy possibility of correcting this smearing. 

The first term in eqn. (11) stands for the convolution product of the input 
with a Green’s function, which characterizes the differences between both 
furnaces. This term influences the measured signal only at the beginning 
and the end of the scan where the scan rate switches. This effect increases 
with increasing asymmetry of the furnaces and can be seen as a fluctuation 
or overscan of the curve at the beginning and end of the measurement. 

The information from the sample is included in the second term of eqn. 
(11). Unlike eqn. (12) this is not an exact difference of the signals from 
sample and reference but a difference of two different smeared signals (with 
different Green’s functions). This difference is then smeared once more 
with a Green’s function which contains a part of the measuring system. The 
asymmetriy of the furnaces is taken into consideration by distinguishing 
between h, and h,. 

The third term in eqn. (11) (hereafter called the loss term) characterizes 
the thermal losses and non-linearities. The losses are a result of heat 
transfer, convection and radiation. In the case of isoperibolic DSC these 
losses depend greatly on temperature of the furnaces. The curvature of the 
baseline is one result of this term. The heat losses are orders of magnitude 
greater than the measuring signal (e.g. up to 15 W in the case of a 
Perkin-Elmer DSC), whereas the noise of the measured signal is of the 
order of 10 p W. For that reason a change of the symmetry of the furnaces 
of the order of some ppm results in a measurable change of the signal. 
Dynamic thermal processes in the sample (e.g. latent heat) induce a change 
of the temperature profile within the whole furnace [5]. This results in a 
change of the heat losses as well. We emphasize that the heat losses depend 
on the heat flux into the sample, which we want to measure. 

The loss term is also affected by changes of the symmetry, as a result of 
changes in the heat transport coefficients, the position of the sample or the 
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shape of the sample. Therefore it is evident that the curvature of the sample 
run curve is different from that of the baseline run. The error of the baseline 
correction can be minimized by realizing nearly the same conditions (e.g. 
block temperature, purge gas flow, heat capacities, position of sample and 
lid, etc.) for both runs. 

Influence of the power compensation on the dynamic behaviour of the 
DSC 

To describe the influence of the power compensation witin the signal 
flow circuit we have to take into account the Green’s function of the 
AT-control unit. Figure 4 shows the extended signal flow. For the functions 
of interest Y;, Y; and WC, we get from the circuit 

s+\v; 
2 > 

*GA- (Y; - Y;) * G”) *G,, - Y”s - YIL) * G,, 

- (‘K - ‘E) * G * (G,, * G, - G - GA 
- (WC, * G,, - WC, * G,) - (‘J’,, * G,, - yv,, * ‘3 (15) 

Comparison of eqn. (4) with eqn. (15) reveals that there is only a difference 

Fig. 4. Scheme of the signal flow in a DSC with power compensation. Symbols as in Fig. 2. 
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in that term containing the power compensation Green’s function. Taking 
Y&, as the measuring signal without power compensation, we obtain 

V, = vlmd - V, * GD * (G, , * G,, - Gzl- G,,) (16) 

After Laplace transformation and some calculations it follows that 

We find the dynamic behaviour of the measuring signal with included 
power compensation being described with the same type of equation as in 
the case without power compensation, but the (Laplace transformed) 
Green’s function combinations terms h,, h, and h, are divided by the 
quotient from eqn. (17). The structure of this equation has the form of a 
Laplace transformed equation of a feedback system. With a proper g,, 
function, the Green’s functions yields smaller values and the relaxation 
after a disturbance must be faster than in the case without power 
compensation. 

Changing the position of temperature sensor and heater within the 

fu mace 

Generally there are two possibilities for the arrangement of the 
temperature sensor and the heater in a DSC furnace. One arrangement 
(with the heater closer to the sample) is shown in Fig. 2. With the aid of a 
special connector an exchange of the function is possible (heater used as 
temperature sensor and vice versa). Figure 5 shows the signal flow circuit in 
this case. 

Fig. 5. Scheme of the signal flow in a DSC with power compensation. Same as in Fig. 2, but 
the position of heater and temperature sensor are exchanged. 
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As including the power compensation does not change the results 
generally, for the sake of simplicity it is neglected in the following 
calculations. From Fig. 5 we find 

Yy= Y,-y~~~)*G**Gl~-Y,,).lG,,-Y; (( 
Y’s= Y*-yy)*G**G,,-Y,,)*G*l-lyg cc 

(18) 

(19) 

and 

c= Y,- ( !&+\I.‘“2 
2 

> 
* GA * (G,, * G,, - Gz * G) 

-(~-yCR)-(yIL1*G11-yIU*G21) 

The Laplace-transformed measuring signal is 

(20) 

(21) 

Comparing eqns. (11) and (21) reveals that there is only some modification 
of the Green’s function which is connected to I& and (CI&. That means that 
the validity of eqn. (11) is not changed in the case of exchange of 
temperature sensor and heater. 

The eqns. (ll), (17) and (21) d escribe the connection between measured 
signal on the one hand and the paths of heat flows and the properties of the 
temperature controllers on the other. If the Green’s functions of the 
controllers [6] and the heat conduction paths [7] are inserted in these 
equations, the measured signal can be calculated for that model of heat 
transfer. In this paper we only discuss the general aspects of these equations 
to obtain basic results. 

CORRECTIONS 

Baseline correction 

Baseline correction without dynamic processes of the DSC 
In this case of “classical” baseline correction in the steady state, any 

dynamic processes needing Green’s functions are neglected. In this case the 
measured curve reads as a sum of unsmeared signals 

Ym=(YI,-YR)+Y, (22) 

and the baseline 

YVm,b = (Yu, - YR) + Yv,, (23) 
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where the sample is replaced by an empty pan (with the same mass as the 
sample pan). 

If the loss terms in both runs are not significantly different (W,-Y& 
the difference of both curves is 

Y m&or = Ys - Yr3 (24) 

Y, characterizes the heat flow into the sample-furnace and the sample pan. 
Y’s includes additionally the heat flow into the sample. Y’,,,,, then describes 
the heat flow into the sample. This method is well known from DSC 
manuals. However in the case of such a simple correction all dynamic 
processes are neglected. 

Baseline correction including the influences of the Green’s functions 
Taking into account the smearing of the measured signal by sample and 

calorimeter influences we obtain for the sample run 

~,=Y,*H,-(YI”,*H,-w”,*H,)-(Y,,*H,-Y,,*H,) 

which equals eqn. (lo), and for the baseline run analogously 

(25) 

WC,,& = Y, * & - (W’B *HI - Y, * H*) - (YIL,b * H1 - Y,,, * H,) (26) 

The DSC manual [4] recommends use of an empty pan for the baseline run. 
Y, describes the heat flow into the contents of the sample furnace during 
the baseline run. We call these contents the “baseline sample”. After 
baseline subtraction (eqn. (25) - eqn. (26)) we get a function wC,,c0, which 
contains the difference of the smeared signals of the sample WC, and the 
“baseline sample” YB convoluted with H1 and another one taking into 
account the loss terms. 

Y&X = (Yuc, - W’B) * Z-& + (Y,, - Y1L.b) * HI - (Y,, - Y,L,) * Hz (27) 

Supposing that there is no significant change in the heat losses of the 
reference furnace (number 2) between baseline run and sample run the last 
term can be neglected. This should always be guaranteed by good 
(reproducible) experimental conditions. The first term in eqns. (25) and 
(26), describing the asymmetry of the empty furnaces in the moment of a 
stepwise change of the scan rate, cancels out in the difference. This 
asymmetry therefore has no influence on dynamic processes during the scan 
in the baseline corrected curve. 

Desmearing 

Every desmearing procedure should yield the true heat flow function into 
the sample. 

The idea of the desmearing algorithm proposed in refs. 1 and 2 is to 
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describe the measuring curve as a simple convolution product with the 
Green’s function in question obtained from the behaviour of the measuring 
signal on step changes of the heating rate. Comparison of eqns. (1) and (11) 
shows that this simple description is only a rough approximation of the 
truth. 

Now the question arises as to how erroneous is our result if we desmear 
the measured results with only one Green’s function (as in eqn. (1)). We 
proceed from eqn. (25) and substitute the smeared sample signal Yg and 
the smeared reference signal YC, due to Figs. 3-5 by 

!& = Y, * (Gs * G,,) 

PR = Y, * (GR * Gz) 

and obtain 

~m=Y,*HD-(Y,*Hs-YR*HR)-(YIL*Hl-Y2L*H2) (28) 

with Hs = HI * Gs * G,, and HR = HR * GR * Gz2. An analogous equation can 
be derived for the baseline from eqn. (26). 

We have also to look at the (one) Green’s function commonly used to 
desmear the measured curves. We determine this function from the 
response of the measured heat flow on a stepwise change of the heating rate 
(step response Green’s function G,,) [1, 21 

Y&=Ym*Gsr 

= q,O* G,, (29) 

where 7 is the step height and 0 the “step function” (0 for t < to and 1 for 
t 3 to). 

The measured curve Y, is described by eqn. (28). A step in the scan rate 
results in a step of Y,, W, and YR. Including these step functions in eqn. 
(28) and comparing with eqn. (29) yields 

with AL being the total loss term. 
After Laplace transformation, eqn. (30) can be solved relative to the 

Green’s function 

(31) 

Al being the Laplace transformed loss term. 
Both the step response Green’s function (eqn. (31)) and the measuring 
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function (eqn. (28)) consists of three terms. Their magnitude depends on 
the symmetry between sample and reference. In the case of good symmetry 
qshs - qRhR, 7, and Al are small. The step response Green’s function is 
then mainly determined by hD, the asymmetry of the dynamic behaviour of 
the furnaces. This asymmetry is only influenced by changing the scan rate 
but not by a thermal effect inside the sample during the scan. 

The signal in which the experimenter is interested is the true heat flow 
into the sample YS. If there are some changes within the sample during the 
steady state region of the measurement, the measured heat flow, in 
response to these changes, is WC,. The connection between WC, and Yv, reads 

Wc,=Y,,*Hs (32) 

If we desmear the measured curve with the step response Green’s 
function G,,, which includes the response function of all parts of the 
equipment, we are in error. This can be followed from (the Laplace 
transformed) eqn. (31), as g,, contains much more than h,. 

Upon increasing the asymmetry between sample and reference, the 
influence of the first term decreases, but the influence of the third term Al 
increases. The relation between them are described elsewhere [8]. 

If we desmear the measured curves after baseline correction it follows 
from eqns. (25)-(27) that the influence of the asymmetry in the dynamic 
behaviour of the furnaces at the beginning and at the end of the scan can 
then be neglected. Therefore we get a minor erroneous step response 
Green’s function from the baseline corrected measuring curves, namely 

q,0*Gs,=(qSO*H,*G,2 *GS-r/&*H,*G,,*G,)-AL (33) 

after Laplace transformation this equation can be solved for the searched 
Green’s function as well 

77s qB 
8% = - gs - -g, g12h, - Al 

77rn ?/In > 

Desmearing the baseline corrected measuring curve with this Green’s 
function (and neglecting the heat losses) we obtain 

17th~-gg, 
m 77, 

r&--& 
m 77, 

(35) 

The inevitable difference between the contents of the furnaces in both 
runs (sample run and baseline run) is the reason for a systematic error. This 
error is smaller if we desmear the baseline corrected curve instead of 
desmearing the sample run and the baseline run separately, because the 
Green’s functions of the furnaces are not part of eqn. (35). 
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The variation of gB due to the variation of the “baseline-sample” changes 
the error. If g, is about zero the desmeared measured signal equals the heat 
flow into an ideal sample. In this case the second term in eqn. (35) vanishes 
and the quotient containing the Green’s functions in the first term becomes 
unity and we obtain 

In this case the asymmetry between both runs is rather high and the heat 
losses are not allowed to be neglected in eqn. (35). 

The case that gB equals zero arises only if the baseline is an exact straight 
line (with slope zero) and if there is no change of the heat flow on changing 
the scan rate. This needs very exact symmetry and practically never occurs 
in reality. The quantitative estimation of this error will be part of further 
experimental work. 

SUMMARY 

The smearing of the measured signal of a power compensated DSC has 
been studied taking into account the dynamic behaviour of the measuring 
system, the sample and the heat transfer path. 

To desmear the measured DSC curves it is possible to extract the 
Green’s function from that part of the curve where the scan rate switches. 
Doing this with the measured heat flow curve results in only a rough 
approximation of the true Green’s function. The reason is that there are 
components in the measured signal immediately after switching the scan 
rate which originate from the measuring system on changing the steady 
state conditions and not from the Green’s function valid for transitions 
during the scan. The difference between these Green’s functions increases 
with increasing symmetry between the heat capacities of the sample and the 
reference. 

From the analysis of the signal flow circuit it follows that the Green’s 
function extracted from the baseline corrected heat flow curve is more valid 
than that extracted from a single sample run. These results can also be used 
to discuss other dynamic errors in DSC measurements in a similar manner. 
Experimental results supporting this theory will be presented in further 
parts of this series [8, 91. 

The dynamic behaviour of heat-flux DSC has not been discussed in this 
paper. To do this, it is necessary to consider both fluxes (i.e. heat fluxes) 
and additionally potentials (i.e. temperatures) in a theoretical approach. 
From the differential equation of this type of DSC obtained with the aid of 
analogous electrical networks [lo] we can conclude that similar results, as 
shown for the power compensated DSC, should also be valid for that type 
of DSC. 
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