

Thermochimica Acta 250 (1995) 19-27

thermochimica acta

Solubilities of organoboron compounds in organic solvents. Part 3. Solid-liquid equilibria of some 1,3-diacyloxy-1,3-diethyl-1,3-diboroxanes in heptane or benzene *

M. Dąbrowski, U. Domańska, J. Serwatowski, A. Sporzyński *

Department of Chemistry, Warsaw University of Technology (Politechnika), Noakowskiego 3, 00-664 Warsaw, Poland

Received 20 February 1994; accepted 14 July 1994

Abstract

The solubilities of two 1,3-diacyloxy-1,3-diethyl-1,3-diboroxanes $[Et(RCOO)B]_2O(A, R is CH_3; B; R is CCl_3)$ in heptane and benzene have been determined at temperatures ranging from the melting point of the solute to 273 K. The equilibrium between the two forms of compound **B** has no significant influence on the solubility of this compound. Three correlation methods were applied: the Wilson, UNIQUAC and NRTL models. The average r.m.s. deviations of the solubility temperatures for all measured data was 1.9, 1.6, 2.7 and 2.4 K for the Wilson, Wilson 3, UNIQUAC and NRTL models, respectively.

Keywords: Benzene; Heptane; Model; Organoboron compound; SLE; Solubility

List of symbols

 a_{12} binary interaction parameter of the Wilson equation g_{ij} molar energy of interaction between i and j $\Delta g_{ij} = g_{ij} = g_{ii}$ difference between energies of interaction

^{*} For Parts 1 and 2 see Refs. [1,2].

^{*} Corresponding author.

20	M. Dąbrowski et al./Thermochimica Acta 250 (1995) 19–27				
$\Delta H_{\rm ml}$	molar enthalpy of fusion of the solute				
n	number of experimental points				
l	number of adjustable parameters				
P_{1}, P_{2}	adjustable parameters				
R	universal gas constant				
T^{exp}	experimental equilibrium temperature				
T^{cal}	calculated equilibrium temperature				
$T_{\rm mi}$	melting point temperature of the pure solute				
$V_{\rm m}^{\diamond}$	molar volume of the solute, solvent				
W;	weight of an experimental point				
x_1	molar fraction of the solute				

Greek letters

γ1	activity coefficient of the solute
σ	r.m.s. deviation of temperature

1. Introduction

1,3-Diacyloxy-1,3-diorgano-1,3-diboroxanes [R'(RCOO)B]₂O are useful reagents in organic syntheses [3,4]. Chelate-stabilized structure I was proposed for some diacyloxydiethyl compounds on the basis of spectroscopic measurements and was recently proved by X-ray diffraction for the substituents R' is C₂H₅ and R is CH₃

[5]. The substitution of hydrogen atoms in acyloxy groups by electronegative atoms, e.g. chlorine, decreases the donor ability of the carbonyl oxygen and causes the "open" form II to exist in equilibrium with the cyclic one I [6]. The aim of this work was to study the solubility of selected compounds of this type in hydrocarbons. Two compounds were chosen for solubility measurements: 1,3-diacetoxy-1,3diethyl-1,3-diboroxane, [Et(AcO)B]₂O (compound A), in which only form I was found to exist in hydrocarbon solution, and 1,3-diethyl-1,3-bis(trichloroacetoxy)-1,3-diboroxane, [Et(CCl₃COO)B]₂O (compound B), in which a significant contribution of the form II was found in spectroscopic investigations [6].

Compound	$V^{\circ a}/(\mathrm{cm}^3 \mathrm{mol}^{-1})$	$T_{\rm ml}/{ m K}$	$\Delta H_{\rm ml}/({\rm kJ~mol^{-1}})$
$[Et(AcO)B]_2O(A)$	194.39	377.15	21.60
$[Et(CCl_3COO)B]_2O(B)$	296.11	327.15	24.22
Benzene	88.87 ^ь		
Heptane	146.49 ^b		

Table 1 Characteristics of solutes and solvents

^a $V_{\rm m}^{\oplus}$ is the molar volume at 298.15 K. ^b Data from Ref. [7].

Table 2 Experimental mole fraction solubilities and activity coefficients of compound A

<i>x</i> ₁	T_1/K	γ1	<i>x</i> ₁	T_1/K	γ1
Benzene					•••••••••••
0.0667	281.85	1.459	0.2497	324.35	1.305
0.0805	287.35	1.443	0.2838	329.05	1.287
0.1002	293.95	1.420	0.3225	333.95	1.272
0.1159	298.55	1.407	0.3442	337.15	1.283
0.1405	304.55	1.378	0.4240	344.65	1.232
0.1627	309.55	1.366	0.4676	347.65	1.192
0.1960	315.55	1.330	0.5090	351.05	1,177
0.2234	320.45	1.323	1.0000	377.15	1.000
Heptane					
0.0033	291.15	39.256	0.1685	348.60	3.376
0.0047	297.35	33.289	0.2799	354.00	2.277
0.0066	302.15	27.534	0.3335	356.30	2.004
0.0108	307.35	19.337	0.4111	358.75	1.709
0.0176	315.05	14.607	0.5034	362.05	1.490
0.0284	323.35	11.201	0.6309	366.15	1.289
0.0415	329.40	8.875	0.7592	370.50	1.164
0:0590	334.85	7.105	0.8374	372.85	1.103
0.0838	339.95	5.618	1.0000	377.15	1.000
0.1216	344.95	4.323			

2. Experimental

2.1. Materials

1,3-Diacetoxy-1,3-diethyl-1,3-diboroxane (compound A) and 1,3-diethyl-1,3bis(trichloroacetoxy)-1,3-diboroxane (compound B) were synthesized as described in Ref. [6] and recrystallized from heptane. The solvents, heptane (VEB Jenapharm, Germany) and benzene (POCh, Poland), were dried over 4A molecular sieves and distilled from benzophenone ketyl through a 50-plate laboratory column. The characteristics of the solutes and solvents are listed in Table 1.

<i>x</i> ₁	T_2/K	T_1/K	γ1	<i>x</i> ₁	T_1/K	γ1
Benzene						
0.0000	278.65			0.2381	294.70	1.576
0.0194	277.45			0.2483	295.67	1.561
0.0380	276.25			0.2543	296.20	1.551
0.0621	274.50			0.2669	297.22	1.529
0.0683	274.10			0.2785	298.15	1.511
0.0737	273.65			0.2888	298.95	1.495
0.0775		273.47	2.248	0.2998	299.80	1.481
0.0829		273.85	2.131	0.3125	300.75	1.465
0.0887		275.05	2.088	0.3265	301.80	1.450
0.0944		276.45	2.069	0.3416	302.97	1.439
0.1013		277.55	2.011	0.3547	303.82	1.423
0.1083		278.70	1.964	0.3692	304.95	1,417
0.1147		279.80	1.932	0.3881	305.95	1.390
0.1214		280.80	1.895	0.4049	306.95	1.375
0.1296		282.00	1.855	0.4244	308.17	1.362
0.1377		283.15	1.821	0.4441	309.25	1.345
0.1461		284.40	1,795	0.4580	310.05	1.336
0.1568		285.77	1.757	0.4804	311.15	1.317
0.1652		286.82	1.731	0.5070	312.50	1.299
0.1727		287.75	1.711	0.5355	313.75	1.277
0.1796		288.55	1.692	0.5593	314.77	1.260
0.1872		289.25	1.664	0.5870	315.90	1.241
0.1943		290.25	1.659	0.6148	317.25	1.232
0.2010		291.07	1.650	0.6530	318.55	1.204
0.2076		291.65	1.630	0.7276	320.85	1.154
0.2149		292.47	1.619	1.0000	327.15	1.000
0.2228		293.60	1.623			
Heptane						
0.0246		272.50	6.823	0.2705	305.85	1.989
0.0344		277.10	5.817	0.3222	308.25	1.798
0.0427		280.10	5.247	0.3835	310.80	1.632
0.0520		283.05	4.803	0.4372	312.60	1.511
0.0597		284.95	4.479	0.5160	315.17	1.382
0.0763		288.55	3.981	0.6009	317.75	1.279
0.0846		290.25	3.813	0.6915	320.15	1.190
0.0992		292.45	3.505	0.7666	321.87	1.127
0.1157		294.45	3.216	0.8382	323.50	1.079
0.1337		296.35	2.965	0.8634	324.05	1.064
0.1535		298.10	2.736	0.9169	325.15	1.033
0.1747		299.90	2.549	0.9624	326.25	1.014
0.1997		301.75	2.367	1.0000	327.15	1.000
0.2290		303.45	2.179			

Table 3 Experimental mole fraction solubilities and activity coefficients of compound **B**

2.2. Measurements

All the operations were done in purified argon atmosphere. The enthalpies of fusion and solubilities were determined as described in Part 1 [1]. All the direct experimental data are collected in Tables 2 and 3.

Table 4

Analysis of solubility data of compounds A and B by the Wilson, Wilson 3, UNIQUAC and NRTL equations (number of points in parentheses): values of parameters and deviations (a in kJ mol⁻¹, Δg in J mol⁻¹, σ in K)

Model and parameters	Α		В		
	Benzene (16)	Heptane (19)	Benzene (48)	Heptane (27)	
Wilson					
Δg_{12}	-2497	6720	-2320	1832	
Δg_{21}	4328	2324	4797	2965	
σ	0.67	3.97	1.29	1.51	
Wilson 3					
$a_{12} \times 10^{-3}$	-0.7391	1.8741	-0.6762	0.4107	
$a_{21} \times 10^{-3}$	1.2947	0.9803	1.4096	0.9829	
σ	1.03	2.74	1.45	1.37	
UNIQUAC					
Δg_{12}	2481	-718	2782	1001	
Δg_{21}	-1158	2565	-1020	- 105	
σ	0.99	6.46	1.75	1.85	
NRTL ^a					
Δg_{12}	3470	52	2443	482	
Δg_{21}	-1343	7842	-1.7	3849	
σ	0.49	6.31	1.13	1.73	

^a Parameter $\alpha_{12} = 0.3$.

3. Results and discussion

The solubilities of compounds **A** and **B** in heptane and benzene are much lower than would be expected for ideal behaviour and show positive deviations from ideality ($\gamma_1 > 1$). The solubility of both compounds is higher in benzene than in heptane. Neither compound shows any phase transitions in the solid state, as proved by solubility and DSC measurements. The eutectic point in the system **B** + benzene was detected graphically: $x_{le} = 0.079$, $T_{le} = 274$ K. The equilibrium between the two forms of compound **B** has no significant influence on the solubility of this compound in hydrocarbons. Moreover, the differences between ideal solubility and experimental data are similar for both investigated compounds.

The solubility of a solid non-electrolyte l in a liquid solvent is expressed as

$$-\ln x_{1} = \frac{\Delta H_{\rm ml}}{R} \left(\frac{1}{T} - \frac{1}{T_{\rm ml}}\right) + \ln \gamma_{1} \tag{1}$$

where x_1 is the mole fraction, γ_1 the activity coefficient, ΔH_{ml} the enthalpy of fusion, T_{ml} the melting temperature and T the equilibrium temperature of the solute, respectively.

Fig. 1. Solubility of $[Et(AcO)B]_2O$ in benzene (a) and heptane (b). The experimental points are matched by curves calculated by the Wilson 3 equation. The dotted line represents the ideal solubility.

Fig. 2. Solubility of $[Et(CCl_3COO)B]_2O$ in benzene (a) heptane (b). The experimental points are matched by curves calculated by the Wilson 3 equation. The dotted line represents the ideal solubility.

In this study, only three methods were used to represent the solute activity coefficients (γ_1) from the correlation equations that describe the Gibbs excess free energy of mixing (G^E) : the Wilson equation [8], the UNIQUAC model [9] and the NRTL model [10]. Two versions of the Wilson equation, i.e. $(g_{ij} - g_{ii}) \neq f(T)$ and $(g_{ij} - g_{ii}) = a_{ij}T^{-1}$ (W3) were applied. The constant of proportionality was similar to the non-randomness constant of the NRTL equation, $\alpha_{12} = 0.3$. The exact mathematical forms of the equations were presented in Ref. [11]. The pure component structural parameters r (volume parameter) and q (surface parameter), were obtained according to Refs. [11] and [12]. The parameters in the above relationship were fitted by an optimization technique. The objective function was

$$F(P_1P_2) = \sum_{i=1}^{n} w_i^{-2} [\ln x_{1i} \gamma_{1i} (T_i x_{1i} P_1 P_2) - \ln a_{1i} (T_i)]^2$$
(2)

where $\ln a_{1i}$ denotes an "experimental" value of the logarithm of solute activity, taken as the first term on the right hand side of Eq. (1), w_i is the weight of an experimental point, described in Ref. [11], P_1 , P_2 are the adjustable parameters of the correlation equation, *i* denotes the *i*th experimental point, and *n* is the number of experimental data.

The r.m.s. deviation of the temperatures defined by Eq. (3) was used as a measure of the solubility correlation

$$\sigma = \left[\sum_{i=1}^{n} \frac{(T_i^{\text{exp}} - T_i^{\text{cal}})}{(n-l)}\right]^{1/2}$$
(3)

where T_i^{exp} and T_i^{cal} are experimental and calculated temperatures of the *i*th point, respectively, *n* is the number of experimental points (including the melting point) and *i* is the number of adjustable parameters.

The calculated values of the equation parameters and corresponding r.m.s. deviations are presented in Table 4.

The best results for the correlation of experimental points in the tested binary systems were obtained by means of the Wilson equations, with the average r.m.s. deviations being 1.9 (Wilson) and 1.6 K (Wilson 3), see Figs. 1 and 2.

Further investigations of the structures of 1,3-diacyloxy-1,3-diethyl-1,3-diboroxanes and their equilibria in solutions are in progress.

References

- U. Domańska, J. Serwatowski, A. Sporzyński and M. Dąbrowski, Thermochim. Acta, 222 (1993) 279.
- [2] U. Domańska, J. Serwatowski, A. Sporzyński and M. Dąbrowski, Thermochim. Acta, 249 (1995) 127.
- [3] R. Köster, Pure Appl. Chem., 49 (1977) 765.
- [4] R. Köster and W.V. Dahlhoff, Synth. Methods Carbohydr., ASC Symp. Ser., 39 (1976) 1.
- [5] R. Köster, A. Sporzyński, W. Schüßler, D. Bläser and R. Boese, Chem. Ber., 124 (1994) 1191.
- [6] A. Sporzyński, J. Organomet. Chem., 448 (1993) Cl.
- [7] A.F.M. Barton, Chem. Rev., 75 (1975) 731.

- [8] G.M. Wilson, J. Am. Chem. Soc., 86 (1964) 127.
- [9] D.S. Abrams and J.M. Prausnitz, AIChE J., 21 (1975) 116.
- [10] H. Renon and J.M. Prausnitz, AIChE J., 14 (1968) 135.
- [11] U. Domańska, K. Domański, K. Klofutar and S. Paljk, Fluid Phase Equilibria, 46 (1989) 25.
- [12] U. Domańska, Ind. Eng. Chem. Res., 29 (1990) 470.