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Abstract 

In discussing the interconnection between the preferred local occurrence of a solid-phase 
chemical reaction and the geometric-probabilistic description of reaction kinetics, it is 
shown that the original solid reagent must be represented in this description in the proper 
manner. A way of doing this for an original single crystal is suggested, through subsequently 
separating the negative crystal growth and the two-dimensional advance of the front along 
the surface with the account of its translational symmetry in terms of Wigner-Seitz cells. 
Symmetry considerations in favor of the proposed essentially two-dimensional approach are 
discussed. 

Keywords: Geometric-probabilistic description; Planigon; Reaction front advance; Symme- 
try; Wigner Seitz cell 

1. Introduction 

The use o f  the geometr ic-probabi l i s t ic  formalism [1 5] originally developed for 
phase transitions in describing solid-phase reaction kinetics is justified because a 
solid-phase chemical reaction is localized, this fact being represented in terms of  the 
format ion  and growth of  nuclei. The chemical essence of  this preferred situation 
was clearly interpreted by Langmuir  [6]: the very first reaction event promotes  
substantially the entry of  neighboring atoms into a reaction. Otherwise, a reaction 
may not  proceed, or  may proceed in a non-localized manner,  i.e. with the format ion 
o f  a solid solution rather than individual phases. However,  in discussing the causes 
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and effects, the energetic inhomogeneity of an original solid reagent is emphasized 
not infrequently as the main factor determining the local promotion of reactivity. 

In a formal respect, this shift of emphasis manifests itself in that the nucleus is 
associated simply with some energetic inhomogeneity (whereas according to Lang- 
muir it may well appear on the originally homogeneous surface) and the growth of 
nuclei is considered with respect to formation of the new phase alone, the original 
solid phase not being represented in corresponding mathematical relationships. 
Along with the causes discussed earlier [7], this situates contributes markedly to the 
ambiguity of experimental data interpretation within a geometric probabilistic 
scheme. 

To restore the balance, the inherent deterministic chemical aspects of locality 
need to be represented within the formal description irrespective of (i.e. separately 
from) energetic inhomogeneity. In this respect, the appropriate formal description 
must be attributed to the original solid reagent treated as a chemical individual. 
This may be done in terms of planigons using the approach suggested earlier [8]. 

2. Model two-dimensional planigon representation versus real three-dimensional 
reaction interface 

The use of planigons for representing the chemical individuality of a solid reagent 
in mathematical models was introduced earlier, proceeding mainly from the intrin- 
sic logic of the geometric-probabilistic formalism [7 9]. However, even a passing 
glance at any scanning electron micrographs, which are not infrequently included in 
experimental studies on solid-phase reaction kinetics and mechanism (e.g. [4,10]), 
may well throw doubt on this intrinsic logic. Actually, the real reaction interface is 
essentially three-dimensional [11,12], and quite different events may well occur in 
the various parts of its bulk. Accordingly, the question arises: what exactly is 
represented in terms of 2D planigons in this complicated 3D picture? 

This question forms part of a more general question: what exactly is described 
when solid-phase reaction kinetics, e.g. thermal decomposition kinetics, are simu- 
lated by the widely used Avrami-Erofe'ev equation 

c~(t) = 1 - e k,- (1) 

or some other similar geometric-probabilistic equation in terms of the degree of 
conversion ~. The usual answer is that this equation formally describes the 
formation and growth of new phase nuclei due to some chemical and related 
physical processes. If this is so, however, there is no room for representing the 
original solid reagent within the formalization. Furthermore, one cannot talk about 
representing it as a chemical individual. The contradiction is especially obvious 
when only gaseous products are formed, e.g. 2HgO---, 2Hg + 02. 

Hence any correct formal description must represent the formation of one or 
other product as the consequence of such bond redistributions as leads to the 
disappearance of the initial crystal structure. We will here term this process "the 
growth of a negative crystal", noting that this term may have slightly different 
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meanings in other contexts. From a formal viewpoint the geometric-probabilistic 
scheme is adequate for describing the origination and growth of negative crystals as 
well as conventional nuclei. But one and the same equation cannot be used for 
simultaneous simulation of both these processes, apart from infrequent cases of 
complete coherence of all steps. In this way we arrive at the necessity of separating 
the negative crystal growth within a geometric-probabilistic description of solid- 
phase reaction kinetics. An original single crystal with a surface we will represent as 
a substrate, possessing 3D periodic structure, with several atomic layers at the 
"selvedge" [13]. Even outside of a reaction the selvedge may differ materially from 
the subgtrate, e.g. in the symmetry (reconstruction). But it is still symmetrical, and 
it is this 2D periodicity which is represented by planigons in the framework of the 
suggested approach. 

The thermal decomposition of NH4HCO 3 provides a suitable illustration of this 
point [12]: clearly observed regular (rhomboid on (001) face) thermal decomposition 
structures, which are the negative crystals of the original phase, are filled by the 
porous product. 

Characterizing the reaction kinetics with some indirect integral measurement, e.g. 
thermal effects, to be compared with the calculated c~(t) curve, and then attributing 
these measurements to the new phase formation alone, one will make an obvious 
mistake. One may estimate this mistake, for example, from the error obtained by 
comparing the heat of formation of oxides with the heat of oxygen chemisorption 
on the corresponding metals proceeding without rupture of the crystal lattices [14]. 

In previous articles [7-9] the main arguments in favor of a two-dimensional 
approach were connected mainly with mathematical considerations: the indepen- 
dence of the geometric-probabilistic models from their dimensionality and the 
possibility of making more explicit the inherent nature of IKP ambiguity in two 
dimensions; the intention to give up the spherical form of nuclei; the possibility of 
using the logic of measure assignment in the IKP structure, etc. The separate 
description of negative crystal growth in the selvedge of the original solid reagent 
introduces more ponderable arguments connected with symmetry considerations. 

3. Symmetry insight into the problem 

A phenomenon can hardly be considered as being completely understood until 
the particular interrelations between the symmetry of causes and the symmetry of 
effects are manifested, the general principles having been formulated by Curie [15]. 
The forms of spot localization were compared with crystal symmetry by Kohlschtit- 
ter [16]. The experience accumulated since then shows that, if an original crystal is 
prepared carefully and a reaction is carried out under conditions required for the 
kinetic regime, this symmetry correspondence is as a rule observed [12]. 

Note that one and the same object may be considered in terms of symmetry as 
an individual or as a medium, depending on circumstances [17]. For negative crystal 
growth the original single crystal thus plays the role of the medium. In crystal 
chemistry the geometric model of a crystal, which is the limiting simplification of its 
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physical model, if considered irrespective of basic principles of thermodynamics, 
solid-state physics and quantum mechanics, provides in many cases a sufficient 
understanding of its structure and symmetry [18]. With this in mind, it seems 
possible and expedient also to represent the advance of the reaction front in terms 
of symmetry and irrespective (at this stage) of the particular nature of a reaction. 

The suggested 2D representation in terms of planigons emphasizes essential 
distinctions in interface advance along the selvedge and into the bulk. Some 
material arguments of fairly disparate nature in favor of this 2D representation, 
connected with symmetry considerations, may be pointed out. 

(i) First of all, there is much experimental evidence (e.g. [12,19]) that the same 
reaction may proceed in different ways on the different faces of the same crystal, 
and that different chemical processes on the same crystal face may be characterized 
by different localization forms. 

(ii) When a real single crystal grows from a nucleus, each of its faces advances 
(preserving orientation) in one direction. As a result the normal to a face of a real 
crystal is always geometrically polar, and not infrequently a real crystal is consid- 
ered as the aggregate of growth pyramids [17]. The existence of geometrical polarity 
means that some other properties may be polar, thus indicating another material 
aspect of the disequivalence of directions. 

(iii) The geometric-probabilistic formalism is independent of the dimensionality, 
and it was noted earlier [7] that a number of misinterpretations may be connected 
with this. One of them concerns the discussed point. If the growth of 3D nuclei is 
considered, their appearance must occur uniformly all over the volume to be filled 
ultimately by a new phase (Fig. l(a)). Otherwise the applicability conditions 
discussed in [7] will not be satisfied. If the nuclei appear at a surface only (Fig. l(b)) 
these conditions require that they grow in two dimensions. By assuming in this 
case three-dimensional growth (Fig. 1(c)), one arrives at the contradiction that 
formation of nuclei is no longer according to Poisson from the viewpoint of their 
subsequent growth. At the same time the real solid-phase reactions correspond just 
to this combination of 2D nuclei formation and 3D nuclei growth, which thus may 
be formalized rigorously in the framework of the geometric probabilistic scheme 
only in the form of a "layered" model (Fig. l(d)). 

Hence it follows from both chemical and mathematical considerations that, in 
simulating negative crystal growth, the reaction front advance along the surface and 
into the bulk must be formalized separately within the geometric-probabilistic 
approach. The representation of a single crystal with a surface as a system of 
parallel crystallographic planes [20] is adequate for this. Following this logic, it is 
reasonable to associate the advance of the reaction front first of all with the 
translational symmetry. 

4. Reaction front advance in terms of Wigner-Seitz  cells 

The structure of a real essentially inhomogeneous surface is determined not only 
by general energetic considerations but also by particular growth processes (his- 
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Fig. 1. The conventional geometric probabilistic description assumes the same dimensionality of nuclei 
formation and growth (a), (b); otherwise (c) the "layered" representation (d) is required. 

tory), deterministic chemical regularities of the reaction front advance being 
masked by the latter. The model suggested [8] takes this into account through 
superimposing two types of Dirichlet domains: the random mosaic characterizes the 
surface inhomogeneity, whereas planigons represent its symmetry. It is worth 
emphasizing once again that, whereas origination of a reaction is determined 
mainly by energetic inhomogeneity, its further evolution is connected largely with 
the crystal chemical structure of a reagent. Aiming to separate the latter within the 
formal description, we will consider here the origination and 2D growth of one 
negative crystal in the initially homogeneous selvedge. 

The appearance of a nucleus means in this context the significant enhancement of 
the ease of bond rearrangement steps in its nearest vicinity. When talking in [8] 
about "transmission (or propagation) of an interaction from one planigon to 
another" we actually left this term without explanation. Further, it will denote a 
significant increase in the probability for the given center of action to participate in 
the elementary single-barrier event provided that the neighboring center of action 
has entered the reaction. One direct illustration of this is the regular periodic 
change of the electron density distribution as a result of gas chemisorption on metal 
surfaces [21]: the one-center chemisorption results in the weakening of bonds 
between the given chemisorption center and the neighboring surface atoms, and in 
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the simultaneous strengthening of bonds with subsequent atoms ("second surround- 
ings"). The electron density redistribution may be considerable, up to the removal 
of the metal atom from the surface. Note also an interesting example of localization 
when partial adsorption of hydrogen on a silicon surface results in the appearance 
of "surface drops' I of (1 x 1) structure within the unchanged (2 x 1) superstructure 
[22]. 

Everything that has true value in chemistry is connected in one or another way 
with the electronic structure of atoms and molecules [23]. In the context of the 
up-to-date formalism of solid-phase reaction kinetics, this phrase is seldom heard. 
It is worth noting in this connection that planigons represent the symmetry of not 
only atomic nuclei positions but also the time averaged 2D cross-sections of 
electron density distribution [18]. This raises the hope that, in the long run, the 
above quote will be uttered quite routinely. Along with the one-to-one correspon- 
dence between planigons and two-dimensional Fedorov groups, this determines the 
central role of planigons in the suggested approach and the use of Wigner Seitz 
cells for representing the advance of the reaction front. 

The complete mathematical theory of planigons was developed in [24]. Planigons 
are independent (fundamental) regions of corresponding symmetry groups. We will 
deal with a particular case of planigons, i.e. Dirichlet domains for surface atoms 
belonging to the same regular system of points (system of equivalent positions, or 
orbit). Although sometimes symmetrical by form, planigons are essentially asym- 
metrical in the sense that their internal points are not interconnected by symmetry 
operations, symmetry elements being situated only at the planigon boundaries. 
Each regular system is represented by one surface atom inside a planigon. The 
"propagation of an interaction" responsible for the reaction front advance is 
determined by the translational structure of a surface. This structure is character- 
ized completely by Wigner-Seitz cells, which are also Dirichlet domains but 
constructed for translationally equivalent lattice points alone [25]. A Wigner Seitz 
cell is an elementary cell of a crystal structure possessing the symmetry of the 
corresponding Bravais lattice. Each type of translationally non-equivalent lattice 
points is represented by one point in a Wigner Seitz cell, which is always 
centrosymmetric and may be either a quadrangle or a hexagon. 

In these basically geometrical terms the above considerations may be formalized 
as follows. 

The simplest case for describing the unrestricted growth of a 2D negative crystal 
is the P1 symmetry group, containing only translations. It is represented by two 
planigons (Fig. 2): one quadrangle and one hexagon [24]. In our context, the 
important distinguishing feature of this group is that the same polygons are also 
Wigner-Seitz cells (and at the same time parallelogons [18]). It is this simplest case 
that was assumed previously [8]. It enables one to emphasize the following material 
point, namely that an object may possess different symmetry in different respects 
[17]. Planigons represent the symmetry of infinite 2D crystal structure P1. In this 
respect the planigon is asymmetric, i.e. its center of action (marked in Fig. 2 with 
an asterisk) is not the symmetry center of the given planigon. We are interested in 
the growth of a finite symmetrical figure (negative crystal) possessing at least a 
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Fig. 2. Two possible types of unrestricted growth in the simplest case of the P1 symmetry group; 
different hatching shows the sequential "entry of planigons into reaction". 

symmetry center. At this point, it is important that for the P1 symmetry group the 
same polygon represents a centrally symmetric Wigner-Seitz cell. (We will see 
below that this is not the case for other symmetry groups). It is thus the treated 
symmetry center that serves as the center of the growing negative crystal. 

Consideration of the next symmetry group P2 allows one to discuss practically all 
major aspects concerning interrelations between planigons, Wigner-Seitz cells and 
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Fig. 3. All possible interrelations between planigons (dotted hatching), Wigner Seitz cells (heavy lines) 
and parallelogons (line hatching) for the P2 symmetry group. Centers of action are shown for planigons 
by asterisks and for Wigner Seitz cells by empty circles; filled circles denote two symmetry axes and are 
shown for conventional elementary cells. 

parallelogons in simulating the advance of the reaction front (Fig. 3). Generally a 
planigon has 3 6 edges, and the P2 symmetry group is represented by all possible 
polygons, quadrangles being presented in two variants [24]. 

The picture differs essentially even in the case of "similar" quadrangles and 
hexagons (Fig. 3(b), (d)): now the planigons possess symmetry axes at the 
boundary, and each Wigner Seitz cell contains two translationally non-equivalent 
lattice points. Although the considered planigon D4A,8 (keeping here the notation 
from [24]) is centrosymmetric in form, its center cannot serve in this case as the 
center of a growing negative crystal. To find the appropriate center, one has to 
construct Wigner Seitz cells for each of two translationally non-equivalent points. 
Their intersection will also be centrally symmetrical (Fig. 3(a)), this center being the 
center for the growing negative crystal. In this simplest case two planigons are 
united into a parallelogon coinciding with the Wigner-Seitz cell (Fig. 3(b)). But 
even in the case of another quadrangle, D4A,I  , the corresponding parallelogon is a 
hexagon, the Wigner-Seitz cell is a rectangle, and the conventional elementary cell 
is a parallelogram (Fig. 3(c)). This means that the hexagonal parallelogon will be 
translated in this case in four rather than in six directions from the center 
determined as described above. 

In the case of the D6, 4 planigon (Fig. 3(d)) the Wigner Seitz cell is a hexagon 
covering two translationally nonequivalent planigons which do not in total form a 
parallelogon. The similar Wigner Seitz cell in the case of the D3A,3 planigon (Fig. 
3(e)) unites two planigons into a parallelogon which is a parallelogram. Finally, two 
pentagonal planigons DSA,~ (Fig. 3(f)) are united into a parallelogon coinciding 
with a hexagonal Wigner-Seitz cell. 
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Further, a diagram similar to that in Fig. 2 may be constructed for each of Fig. 
3(b) 3(f), representing the reaction front advance. Each Wigner Seitz cell in this 
diagram will contain planigons (according to Fig. 3) determining particular local- 
ization forms. 

The above examples enable one to state the following general scheme. For 
simulating the 2D reaction front advance in terms of planigons and Wigner-Seitz 
cells one has to do the following. 

(i) Construct the Wigner-Seitz cell for an arbitrary point of the considered 
lattice; this cell will contain some translationally non-equivalent points. 

(ii) Construct the Wigner-Seitz cells for each of these points; the intersection of 
these cells will be centrally symmetrical, and this symmetry center is the center of 
the growing negative crystal. 

(iii) Construct around this center a diagram (consisting of quadrangle or hexago- 
nal Wigner-Seitz cells) similar to that in Fig. 2. 

(iv) Place planigons into each Wigner-Seitz cell for determining the localization 
form. 

This geometrical construction may be made for any symmetry group and then 
may be included in a more general scheme [7,8] taking account of the probabilistic 
part of the problem. 

5. Conclusions 

Therefore, in considering the interconnections 

localization 
chemical ~ of a solid-phase __~ geometric-probabilistic 

interpretation ~- chemical reaction "-- description 

one arrives at the necessity of attributing the geometric probabilistic description 
first of all to the original reagent in the form of a single crystal, three main 
subsequent steps being involved. 

(i) Separate the negative crystal growth. 
(ii) Separate the 2D description of the reaction front advance along the surface. 
(iii) Represent this by an account of the translational symmetry of a surface. 
The simultaneous use of two varieties of Dirichlet domains, planigons and 

Wigner-Seitz cells, makes more precise the deterministic part of the approach 
suggested in [8] and determines the peculiarities of the geometrical part of the 
geometric probabilistic formalism connected with localization phenomena. 

Because the inhomogeneity of the original solid reagent is not taken into account 
at this stage, symmetry considerations become efficient, and the most convincing 
arguments in favor of the essentially 2D approach suggested are based mainly on 
these considerations. At the same time it becomes clear how the sample inhomo- 
geneity may be taken into account and a 3D picture may be constructed from 2D 
"layers". 

In mathematical terms, we restrict ourselves here to a geometrical presentation 
alone for emphasizing mainly conceptual aspects. To include this in the IKP 
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structure necessitates alternative algebraic formalization in terms of difference 
equations taking account of the discrete character of the approach. This point 
merits separate discussion and will be the subject of a subsequent paper. 
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