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Abstract

The kinetic analysis of any isothermal process is based on compliance with the equational
form g(a) = k¢, which requires an a priori knowledge of the final property change Ap... It is
therefore imperative that this equation is not applied to incomplete reactions. A new on-line
method has therefore been developed here which gives analytical solutions to well known
mechanisms of reaction without recourse to Ap,.. In some cases, where Ap_k appears as a
product or exponential terms are to be found, computer based numerical methods have been
adopted to solve the equations. The deciphering of the mechanism and the evaluation of &
without waiting for the completion of a TG run has been demonstrated with a hypothetical
TG curve.

Keywords: Accelerating rate equation; Decelerating rate equation; Kinetic analysis; On-line
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1. Introduction

After reviewing current methods of evaluating the rate constant & and pointing
out some of the inherent weaknesses of the non-isothermal method [1], a technique
is outlined for the determination of k during the course of an actual isothermal
experiment. In isothermal kinetic studies involving at least one solid phase, the rate
constant is usually represented by an equational form

g(@) =kt M
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Table 1
Commonly used solid-state reaction mechanisms

Rate mechanisms g(2) = f(kt) functional form o = f(kt) functional form

—

. Accelerating rate equations

Power law El 2=kt o= (kt)
Exponential law P1 Inx=kt x = exp(kt)
2. Sigmoid rate equations (nucleation and growth control)

Avrami-Erofeev A2 [—In(l —2)]" ' =kt 2=1-—2exp(—kt)

Avrami-Erofeev A3 [—In(1 — )} Y3 =kt x=1—3exp(—ki)

Avrami-Erofeev A4 [—In(l —2)]" "=kt 2=1—4exp(—kt)

. ] exp(kt)

Prout—Tompkins Bl In =kt y=—

l—2 1 4+ exp(kt)

3. Deceleratory rate equations
3.1. Based on diffusion mechanism
One-dimensional diffusion D1 22 =kt a= \/E
Two-dimensional diffusion D2 (1 —a)In(l —a)=kt -
Three-dimensional diffusion D3 [I—(—-x)"P=kt a=1—(1~ \/ﬂ)"
Ginstling - Brounshtein D4 [1-(2«/3)]—(1—2)* =kt -
Anti-Jander (counter diffusion) (M+2)?—1P=kt a=(l+ \/E)" -1
3.2. Based on geometric models
Contracting area R2 [I-(1—a)?=kt a=1—(1—kt)?
Contracting volume R3  [I—(1—a)?® =kt a=1—(1—kt)
3.3. Based on order of reaction
First order Fl1 —In(l —a) =kt x=1—exp(—kt)
Second order F2 Y[l —a] =kt a=1—1/(kt)
Third order F3 [l —aP=k a=1—1//kt

where g(a) is a function of the fraction reacted at time ¢ at an arbitrary constant
temperature.

The function g(«) can take different forms depending on the type of reaction that
occurs, and such forms have been reviewed by Brown and co-workers [2,3]. A
summary of these functional forms is given in Table 1. One way of obtaining & is
to calculate all the available functions of g(«) and to find the one which gives the
best linear compliance with Eq. (1). Most of the methods so far reported in the
literature make use of &, which is the fraction converted and is measured by means
of any property p that changes linearly and continuously with the reaction during
the course of an isothermal experiment as a function of time. The property chosen
must be sufficiently sensitive to represent the change of the state and must be
linearly proportional to the number of reactant or product molecules. In thermal
analysis, such a property which is monitored as a function of time can be any one
of the following, viz.: the instantaneous weight during thermogravimetry, the
intensity of a characteristic line in high temperature X-ray diffractometry, the
enthalpy in dynamic calorimetry, the volume in thermomechanical measurement, or
the physical dimension in dilatometry. The term « is generally defined by
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_ o, —pdl _ Ap

@ =P AP
where p, is the value of the property at any instant of time, p, is the value of the
property at the initial time, and p_ is the value of the property after infinite time
(symbolizing completion of the reaction).

In general, the methods of kinetic analysis are based on the very definition of .
That is, one can compute the fraction converted only with the knowledge of p__ after
completion of the reaction. Quite often one comes across situations where reactions
in a solid medium seldom proceed to completion for a variety of reasons, such as
low temperature and limitations in the solid-state transport processes. Such reac-
tions designated as incomplete reactions are therefore unsuitable for the determina-
tion of kinetic constants because of their dependence on the numerical value of p_ .
However, the present trend of computer based automation-cum-data processing
could facilitate the determination of kinetic constants, even without recourse to the
value of p, if the mathematical solutions could be suitably reformulated. The steps
involved in such an approach are described in this work, along with its application
to a numerically simulated TG curve for the purpose of illustration.

x

(2

2. Mathematical formulation

Eq. (1) above can be rewritten as

x = flk.1) 3)

and various g(«) equational forms listed in Table 1 correspond to different
mechanisms. For two distinct instants of time ¢, and ¢,, Egs. (2) and (3) yield

%y = Ap,/Ap.. = flk,1,) 4)
Ay = Aptl/Apx :f(kstz) (5)
The ratio of the weight changes R is obviously given by the ratio of «,; and «,,
R=Ap,/Ap, = flk,t,)[f(k,15) (6)

Eq. (6) can be solved algebraically for & for the different mathematical forms of
g(a) in Table 1, and such solutions are summarized in Table 2. It should be noted
at this juncture that, for all except a few of the mechanisms, the algebraic solutions
could be found in the present study.

The exceptional cases are mainly those mechanisms based on nucleation and
growth, such as Avrami—Erofeev equations, which have exponential terms render-
ing algebraic solutions difficult, if not impossible. However, the numerical solution,
viz., the Newton—Raphson approach, can be employed for elucidating the roots of
Eq. (6) when an analytical route is not feasible. A brief description of this iteration
method, along with initial guessed values, are given in the Appendix. In addition,
the rate equations based on a power law, such as o' = kz, cannot be solved for an
exclusive k. Instead, the algebraic roots lead to n, the power law exponent, and k"
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Table 3
Numerical values of hypothetical TG curves chosen for Figs. 1 and 2

Time/s Delta W (AW) values for
Fig. 2 Fig. 1
10 1.3216 0.2151
70 3.2341 1.4117
130 4.2075 2.4619
190 4.9025 3.3838
250 5.4482 4.1929
310 5.8977 4.9030
370 6.2789 5.5263
430 6.6086 6.0734
490 6.8980 6.5536
550 7.1546 6.9751
610 7.3942 7.3450

Note: AW, =10.0000.

multiplied by Ap.., as is pointed out in Table 2. Further, some of the equations
which are based on diffusion controlled mechanism (viz., the Ginstling—Broun-
shtein equation D4 and two-dimensional diffusion D2, have defied all our attempts
at solution for their roots. Perhaps the following polynomial approximation
suggested by Bar-Gadda [4] may lead to solutions of the D4 and D2 equations.

2.1. Evaluation of k with numerical simulation

Two hypothetical TG curves as given in Table 3 are taken for testing the
analytical solutions listed in Table 2. Both the approaches developed in the earlier
section, viz., those of analytical solutions and numerical methods, have been
applied to the different models and the values of & have been computed as a
function of time. Typical results of such computations are presented in Fig.
1(a)—(d). In the case of the mechanism that is operative for the reaction under
investigation, k has to be independent of time. If k£ does not have a constant value,
this indicates that the mechanism under consideration is not operative. In addition
to these two distinct categories, possibilities exists for marginal variation of k with
time, which makes it difficult to select between the two options (see Fig. 2(a)-(d)).
Under these circumstances, one resorts to the computation of o« and Ap_, using the
derived values of k£. A cursory look at the values of « and Ap calculated thus will
usually reveal the acceptability or otherwise of the mechanism being considered.
This point is illustrated with the help of Table 4. It is obvious that values of « that
are either greater than unity or negative and those values of Ap,, noncomparable in
magnitude to the values of Ap, or nonconstancy of Ap_, are untenable. It is thus
easy to reject the mechanisms that have given rise to such & values.

In this manner, numerical simulation has been carried out on all fourteen
mechanisms, and it is found that the present on-line method can be readily adopted
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Fig. 1. (a), (b).
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Computed rate constant k (1E-4) D3
5 0.03
©
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—7 Contracting volumeR3 —10.025
20 —— Jander Eqn D3
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Fig. 1. Illustration of the method for generation of the rate constant k vs. time ¢ using the data of the
hypothetical TG curve (Table 3), which is following the F1 reaction mechanism for various reaction
mechanisms: (a), based on reaction order; (b), based on nucleation and growth; (c), based on diffusion
and geometric models; (d), based on accelerating rate expressions.
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Fig. 2. (a), (b).
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Fig. 2. Plot of computed rate constant k as a function of reaction time ¢ for the hypothetical TG curve
which is following the D3 reaction mechanism, which exhibits marginal variation of k with time for
certain reaction mechanisms among various reaction mechanisms: (a), based on reaction order; (b),
based on nucleation and growth; (c), based on diffusion and geometric models; (d) based on accelerating

rate expressions.
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to clarify the mechanism that is operative in the condensed phase reaction with-
out waiting for the completion of the reaction.

3. Application of on-line method to real TG curves

The foregoing discussion on numerical simulation has been restricted to a
hypothetical TG curve instead of a real one. Nevertheless, the on-line method can
be readily adapted to real experimental TG curves if the following precautions are
taken.

(a) The weight record should be devoid of apparent weight changes, as achieved
by suitable incorporation of blank corrections during the TG run itself, in order to
derive the full benefit of the on-line method. It must be mentioned that the zero-time
corrections should be also carried out a priori so that the initial weight change Ap,
is free from error. A mathematical method for correcting zero-time errors during the
course of the isothermal experiment itself is under development [5].

(b) The weight record should be a sufficiently smooth one, free from fluctuations,
as could be attained by incorporation of computer programs based on Fourier
analysis; otherwise, erratic values of & might be obtained.

Even though the above method is applicable for any isothermal experiment, in
general thermogravimetry constitutes a major field of activity for high temperature
solid-state kinetic studies, which in turn encompass many high temperature factors
(e.g., compatibility, decomposition, corrosion, preparation, degradation etc.). Ap-
plication of the above method to experimental techniques other than ther-
mogravimetry should be possible provided that the change in the relevant property
is smooth and devoid of “apparent’” changes, and also free from zero-time errors or
with the possibility of in situ correction of such errors.
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Appendix: Newton—Raphson method of finding the root

Consider x = x, as a known rough approximation to a root of f{x) = 0. Suppose
that the exact root is at x = x; + A, so that f(x,+h)=0. As & is a small value
compared with x, by Taylor’s expansion

S +h)=0=f(x)+ 1 (x) +h°2"(x) + ...
Neglecting terms in 42 and other higher order terms results in

h=x —flx)f(x))
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Table Al
Initial approximate roots for various mechanisms which depend on the Newton-Raphson method for
the solution of the rate constant k

Mechanism Initial root k for iteration purpose
1-R
A2 k= (4-R
2(t; — Rty)
1 —R)2
A3 _ U=R2
3(f; — Rty)
1—-R)3
Ad _(=R3
4(r, — Rty)
R3 - M
(Ri3—17)
Bl L, — 1)K+ Q2 — Rt —1,)k+ 21 —R)=0

Note: the above equations are not analytical solutions for the rate-constant, since they are obtained
by ignoring some terms (higher order terms in expansion).

where f(x,) is the value of the differential coefficient of f(x) at x = x,. Conse-
quently, a second approximation to the root is

f(x)

Xo=xX+h=x ———=

Sxp)
This approach may be used iteratively for improving the approximate root to the
desired degree of accuracy. The initial approximate roots for iteration purpose for
the rate mechanisms that are controlled by nucleation and growth are given in
Table Al.
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