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Abstract 

Re-examination of the partition function and related thermodynamic functions of transla- 
tion in a cubical box of very small volume fails to confirm the recent conclusion of Slanina 
about unlimited growth of the internal energy. On the contrary the translational internal 
energy for very small dimensions of the cube approaches zero in the limiting case. The source 
of the discrepancy is the zero point energy which should be taken into account when the 
partition function and some of related thermodynamic functions are calculated. The parti- 
tion function calculation technique is also discussed. Simple and exact double formula 
expressions are suggested instead of direct summation. 
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1. Introduction 

In an art icle publ i shed  in this journa l ,  Slanina [1] pa id  a t ten t ion  to the possible 
subs tant ia l  devia t ion  of  the t rans la t iona l  pa r t i t ion  funct ion and re la ted internal  
energy for a par t ic le  in a small cubic box f rom its convent iona l  classic values. The 
cause for such a t ten t ion  was the first in fo rmat ion  [2] abou t  the presumed low 
t empera tu re  nuclear  fusion in pa l l ad ium electrodes together  with some o ther  cases 
where a tomic  and molecu la r  species could  find themselves in very small  volumes.  
There  is no d o u b t  that  the conven t iona l  classical app roach  fails in such cases and 
re -examina t ion  o f  the p rob l em is required.  
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2. Results and discussion 

It is convenient to consider the one dimensional case of  a particle in an infinitely 
deep square well potential. The results can be extended easily to the three 
dimensional case. 

The energy spectrum in this case is given [3] by 

h 2112 

E(n) - 8ma2 (1) 

where m is the mass o f  the particle, a is the width of  the well, n = 1, 2 . . . . .  is the 
quan tum number  and h stands for the Planck constant.  It should be emphasized 
that the min imum energy is 

h z 
E o = E(1) - 8ma2 (2) 

not  the bo t tom of  the well. 
Taking into account  zero point energy we have the following expression for the 

quan tum parti t ion function 

Qq = ~ exp 
n = l  n = l  

where 0- = h2/8mkTa 2. 
For  sufficiently small a values it is possible to neglect the zero point  energy and 

replace the summat ion (3) by the integration over all the quan tum levels. 
The conventional  formula is then obtained [3] 

Q c , = l / 2  ( ~ x / ( ~ = l / 2  (4) 

Using Eq. (3) and the usual thermodynamic  relations [3] we obtain for the 
internal energy U 

0-(/ /2- 1 ) exp ( -0 - (n  2 -  1)) ~ 0-nZexp(-0-n 2) 
U/RT = "= i _ ,, = 1 0- (5) 

e x p ( -  0-(n2 - 1)) ~ exp( 0-//2) 
n =  I n =  ] 

The following expression is obtained for the molar  internal energy of  translational 
motion.  

0-(n2-1)exp(-0-(n 2 1)) E 0-n2 exp(-0-n 2) 
E / R T =  3 " = '  = 3 " = ~  3a (6) 

exp( -0 - (n  2 -  1)) Z exp( -0 -n  2) 
n = l  n = l  

It is readily seen that the only difference between our  Eq. (6) and Eq. (5) o f  Ref. 
[1] is the second term. In the case where 0---+ o¢ (a--+0 and/or  T--+0 and/or  m--+0) 
the first term goes to 30- and cancels the second one resulting in E/RT-+O. Our  
conclusion is that  in a small box, zero point  energy (Eo/RT= 30-) grows without  
limitation but internal energy decreases to zero. Detailed examination o f  the 
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Fig. 1. Dependence  of  the reduced molar  internal energy of  t rans la t ion in a cubical box E/RT on the 
reduced d imensionless  quan t i ty  a. 

temperature dependence shows that the reduced internal energy has a very small 
and wide maximum and goes to the classic limit E/RT= 3/2 at a--,0. 

The results obtained in this paper and in Ref. [I] are compared in Fig. 1. One can 
see that for large values of a the reduced internal energy calculated in Ref. [1] 
nearly coincides with the reduced zero point energy. Table 1 demonstrates the 
application of our result to the case of hydrogen occlusion in the lattice of 
palladium. That is the example which was considered in Ref. [1]. The results 
presented indicate that accurate calculation of translational internal energy in a 
small area can lead to values both less and more than the value E/RT= 1.5 which 
is obtained using the conventional description of translational motion and is always 
much less compared to Slanina's values [1]. The physical meaning of the conclusion 
is very well understood because the translational motion in a small box is 
transformed into a type of vibration and in fact is frozen in the limiting case. 
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Table 1 
Translational contribution to the reduced molar internal energy (E:RT) of species accommodated in 
palladium cells at room temperature ( T =  298.15 K) 

Species m × 10 27/kg a x 10 m,'m E/RT 

This work Ref. [1] 

H 1.674 4.020 1.567 1.715 
3.884 1.565 1.723 
1.280 1.014 2.473 

D 3.345 4.020 1.572 1.646 
3.884 1.572 1.651 
1.280 1.348 2.078 

T 5.008 4.020 1.568 1.617 
3.884 1.569 1.622 
1.280 1.454 1.942 

He 6.647 4.020 1,563 1.601 
3.884 1.564 1.604 
1.280 1.502 1.869 

3. Double formula expression 

The failure of the conventional partition function of translational motion in a 
small box is caused by replacement of rigorous summation by approximative 
integration. Slanina [1] considers the technique of direct summation as the single 
universal means for the purpose of accurate calculation neglecting other ap- 
proaches. In this paper we study numerically one of the semiclassical approaches 
[4,5] and quantum expression (3) retaining the first few terms in both cases. A 
similar approach to the case of free internal rotation gave a surprisingly accurate 
result [6]. 

The semiclassical approximation (it is exact in this case) suggested in Refs. [4] 
and [5] is based on the Poisson transformation of Eq. (3) and is given by 

Q s c = (  0"5 ( ~  - 0"5 + x / ~  ;,l=l~exp(--rr2n2/°-)) exp(°') (7) 

Let us consider Eqs. (3) and (7) retaining the first few terms in the respective sums 

k 
Qq = ~, exp ( - ( i  2 -  1)a) 

*=' (8) 

Qsc=(0.5~/o)-0.5+~ ~, exp(-~r2j2/o))exp(a) 
j = l  

and the following combined approximation 

Qca (k,m,ao) = ~Qsc(m,a) a < ao (9) 
( Q q ( k , a )  a > a o 
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Fig. 2. One dimensional translational partition function and related thermodynamic functions near the 
point o- = re. 
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One can consider symmetric (k = m) and asymmetric (k ¢ m) cases. In the symmet- 
ric case it is na tura l  to find o0 = zc, because 

Qq(]f,g) = Qsc(k,Tc) (10) 

for any k value. 
In the asymmetric  case the Oo value should be calculated numerical ly from the 

equat ion 

Q~(m,Oo) = Qq(k,o0) (11) 

We examine only the symmetric case and the double formula expression (9) can be 
rewritten in the form 

fQsc(k,o)  o _< rc 

Qc~ = ~ Qq(k,o)  o > rc 
(12) 

for practical use. 
The funct ion (12) is cont inuous  and provides the correct behavior  for both o ~ 0 

and o ~  ~ limits at any k value. However it has no cont inui ty  for temperature  

derivatives at o- = ~z, so related thermodynamic  funct ions (internal  energy, entropy 
and  heat capacity) have a definite break at this point.  As a criterion to choose an 
opt imal  k value we consider numerical  closeness of heat capacity values related to 
both parts of Eq. (12). 

Graphs  are shown in Fig. 2 for ln(Qc,') and related thermodynamic  funct ions 
versus In X (X = ( ~ )  at k = 1 and k = 2. The formulae used in these calcula- 
t ions are given in the Appendix.  The graphs illustrate that visible discont inui ty  of 
both first and  second temperature  derivatives takes place only for k = 1. For  k = 2 
both  energy and heat capacity values are con t inuous  numerically.  Numerical  data  
on discont inui ty  and max imum deviation from exact values are summarized in 

Table 2. 

Table 2 
Numerical values at the point a = 

Function Equation Value Deviation from 
for Q exact value 

IlOO( F F~t)/F~ . . . .  I%, 

1041n Qca A4a 0.806963 <2 x 10 5 
A4b 0.806863 <2 x 10 5 
Exact 0.806863 

IO?E/RT A5a 0.7605138 <5 x 10 5 
A5b 0.7605143 <5 x 10 -5 
Exact 0.7605140 

102C/R A6a 0.7167095 .~2 x 10 4 
A6a 0.7167091 <2 x 10 4 
Exact 0.7167102 
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As a result o f  the analysis the following expression can be recommended for 
practical use 

= ~(0.S,, ( ~ / o - )  - 0.5 + ~ ( e x p ( -  ~2/o-) + exp(-4jr2/o-)))e ~ o- _< 7r (13a) 

Qc~ ( I  + e x p ( - 3 a )  o - > g  (13b) 

It should be noted that all values o f  internal energy given in Table 1 are reproduced 
using both k = 1 and k = 2 approximat ions  in Eq. (12). So for many  applications 
one can use the simplest expression 

J'(0.5x/(rr/o- ) - 0.5 + x/~(Tr,/o-)exp(-Jr2/o-))exp(o-) o- _<Jr (14a) 
Qc~(1) 

a > 7r (14b) 

bearing in mind the small inaccuracy of  thermodynamic  functions near the o- = 7r 
point. 

Appendix 

Using the auxiliary variables 

X = x/0r/o-) Y = exp( - JrX 2) Z = exp( - 3o-) 

Pj = 0 . 5 X -  0.5 + X Y  P2 = PJ + XY4  

D 1 = 0.5 + Y(1 2 r e X  2) D 2 = D l + y4(1 --  87~X 2) 

Sl = 2~XY(27tX 2 - 3) $2 = S1 + 8 ~ X y 4 ( 8 1 r X  2 - 3) 

the following expressions can be derived for thermodynamic  functions o f  one 
dimensional translation. 

For  the case k =  1 in Eq. (12) (or Eq. (14)) 

F / R T = l n Q = { ~  l P ' + a  a>~a<<-~ 

E / R T = { ~  ' / ( 2 P ' ) - a  a>~a<-Tc 

f X 2 ( S l / P l  - ( O l / P l ) 2 ) / 4  ~ - 3 X D , / ( 4 P , )  o- < ~  
C / R  = (o O- ~ TE 

For  the case k =  2 in Eq. (12) (or Eq. (13)) 

'ln P 2  + o- 6 < /Z" 
F / R T  = In Q = (In(1 + Z)  o- > 7r 

~ X D 2 / ( 2 P 2 )  - -  cr o- <__ 7r 

E / R T =  (3o-Z/(1 + Z)  o- > 

fX2(S2/P2 - (D2/P2 )2)/4 + 3XD2/(4P2) cr < Tc 
C/R = (9o-2Z(1 _ Z/(1 + Z))/(1 + Z)  o- > 

(Ala)  

(Alb)  

(A2a) 

(A2b) 

(A3a) 

(A3b) 

(A4a) 

(A4b) 

(A5a) 

(A5b) 

(A6a) 

(A6b) 
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