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Abstract 

Based on classical thermodynamic arguments, an equation relating the partial derivatives 
of the kinetic rate constant with respect to temperature and pressure is derived for a 
reversible elementary chemical reaction at equilibrium. 

It is argued that the rate constant is in principle a state function with temperature, 
pressure and composition as independent variables in non-equilibrium states. It reduces to a 
state function of temperature and pressure only at equilibrium, or when the rate constant is 
(explicitly assumed to be) independent of composition. The reaction rate is a state function 
of temperature and pressure only in the case of equilibrium. 

On this basis an alternative interpretation of observed correlations between experimental 
rate data reported in the literature is proposed. 

INTRODUCTION 

At thermodynamic equilibrium, a closed, reactive chemical system is in a 
classical thermodynamic state. The thermodynamic functions describing the 
time-independent properties of the system are thermodynamic state [l] 

(point [2]) functions. By analogy, this should also apply to other functions 
characterizing the equilibrium state, such as the related, classical kinetic 
functions including the rate constant of an elementary reaction. 

The time-dependent, non-equilibrium state, however, is not a classical 
thermodynamic state. But by assuming thermal and mechanical equilibrium 
in the system [ 31, an analogous (more or less) approximate description of 
the non-equilibrium state becomes possible in terms of classical thermody- 
namic functions. 

The main point here is that these functions are (state) functions of 
temperature, pressure (or volume) and composition as independent vari- 
ables in a given, closed system, as opposed to only two at equilibrium. By 
analogy, this should also in principle apply to other functions characteristic 
of the state, such as the rate constant, for instance. 
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On the basis an alternative interpretation of the correlation derived from 
experimental reaction rate data reported in the literature [4] becomes 
possible. 

Before discussing this in more detail, an equation relating the partial 
derivatives of the kinetic rate constant with respect to temperature and 
pressure will be derived for a reversible, elementary chemical reaction at 
equilibrium, using classical, thermodynamic arguments. 

THERMODYNAMIC CONSIDERATIONS 

Consider a reversible reaction C ai Ai = 0. The reaction coefficients Ui are 
taken to be negative for those species Ai that appear on the left-hand side 
of the reaction equation as normally written, and positive for those to the 
right. The differential of the thermodynamic equilibrium constant is com- 
pletely specified in terms of T and P 

dlnK=FdT+ydP (1) 

We define K in terms of mole fractions xi and rational activity coefficients 
5 [5] in the general case 

TheJ; coefficients are functions of composition, i.e. the mole fractions. The 
latter vary in general with temperature and pressure in a closed system at 
equilibrium. Introducing the number of moles of the ith species ni as 
variables, we may write alternatively 

K(x,x, . . .) = IQz,rz~. . .) 

given that 

Hence 

dlnK=Tydni 
I 

(2) 

We limit the discussion to a reaction in a given, closed system that evolves 
from one equilibrium state to another as the temperature and pressure 
change. Thus, other equilibrium states, which are accessible to open systems 
by mass transfer across phase boundaries between the system and its 
surroundings at constant T, P and K, are ignored. 

In this case, the change in ni is completely specified by 
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dni =F;dT+zdP (3) 

Provided there is (approximately) no net conversion of actual reaction 
species in intermediate reactions the mass balance becomes 

dni dnj 
- a- (independent of i, j) (4) 

4 J 

There are, in principle, two free variables in the present system. Possible 
choices are TP, Tn, or Pni, for instance. The change in the third of these 
variables due to changes in the other two is given by eqn. (3), while changes 
in the remaining nj’s are given by eqn. (4), etc. The variables themselves 
may be obtained by integrating from the starting point, given the initial 
conditions. 

Thus, by substituting eqn. (4) into eqn. (2) and then using eqn. (3) 

which may be compared with eqn. (1) to give 

1 i?nk a In K -- 

and 

(5) 

(6) 

using the convention ple = p”(TP), in ,u~ = 11” + RT lnJ.x,, such that aplF / 
aP = VT, as required in the ideal gas and ideal solution cases [ 61. 

AV” = 0 for an ideal gas reaction when c ai = 0. 

If the reactants and products are related by symmetry as are, for instance, 
enantiomers, then both AH” and AV” are zero, so that d In K/aT = 8 In K/ 
aP = dnk = 0, for all k. The probability that AH” and/or AV” vanish 
completely is zero in the absence of any such restriction. 

KINETIC-THERMODYNAMIC CONSIDERATIONS 

Assuming the reversible reaction to be elementary [7], we may put 

K = k,lkp (7) 

where k, and k_ are the rate constants of the forward and reverse reaction, 
respectively. (This somewhat unusual form of the rate constant ratio is 
related to the usual one based on molarity below.) The rate constants are, 
in principle, functions of T, P and composition, whereas the ratio is 
independent of composition at fixed T and P. 
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Substituting eqn. (7) into eqn. (1) gives, after rearranging terms 

E d lnf (say) (8) 

where f =f(TPnln2.. . n *), including independent and dependent variables 
for completeness; n * is the mole number of transition state complexes, 
which is another quantity common to both reactants and products, intro- 
duced for completeness; f may, in principle, vary with composition at fixed 
T and P. However, such states are ruled out at the outset by eqn. (3). Thus, 
n*(TPn,n,. . .) andfand h ence, k, and k_ are here completely specified by 
T and P given the initial conditions. Furthermore, if eqn. (8) is to be 
reduced to the normal differential form of k, and k_ in terms of T and P, 
f must simply be taken to be constant. In this way we obtain 

dlnk,=ydT+TdP (9) 

where _+ denotes either + or -. 
Similarly, we obtain from eqns. (2) and (7) 

dlnk, -1 
8 Ink_ 

~dni=dlnk_-~--- an, dnirdlng (say) (10) 
I I I I 

where g = g(TPn, n2 . . . n*). In agreement with statements made above, g 
may be written as a function of the ai’s only. Thus 

dlng=x- a lngdn. 
i ihi * 

which gives, with eqn. ( 10) 

d In k, = C a lnif,z g, 
I I 

dni = 2 T a lnjf.tg) ai 
I 

=- d, !!$ dT + !$ dp 1 a ln;f,*g) 

>i I 
(11) 

using eqns. (4) and (3) respectively. Comparing eqns. (9) and ( 11) leads to 

1 an, 
c 

a ln(k,g) alnk, -- 
akdT i ani ai = 7 

and 

1 an, 
c 

a ln(k,g) d Ink, -- 
akt3P i dni ai =ap 

from which we obtain by dividing by eqns. (5) and (6), respectively 
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alnk,alnK 8lnk+alnK _==- 
ap aT aT ap (12) 

Thus, thermodynamics postulates a definite relationship between the partial 
derivatives of the rate constant with respect to temperature and pressure. (A 
further analysis indicates that the auxiliary function g cannot be determined 
along these lines alone. Alternatively it may be chosen. Thus, put equal to 
a constant, g simply drops out of the equations.) 

Equation (12) may also be applied to heterogeneous processes in simple 
one-component systems (mass transfer across phase boundaries). P and T 
are no longer independent variables: eqn. (l), equated to zero, provides the 
Clapeyron equation; using eqns. (5) and (6) dP = (AH/TA I’) dT. The ni 
represent molecules at interfacial (reactive) sites, or the like. 

One finds from eqns. (9) and ( 12) 

The expression in parentheses on the right-hand side ( =d In K) is an exact 
differential of T and P according to classical thermodynamics, i.e. d* In K/ 
aPaT = d* In K/aTaP). There is a priori no such restriction on the ratio 
(denoted R below) on the right-hand side, so that d In k, may in principle 
be an inexact differential of T and P under equilibrium conditions. 

However, if d Ink, is inexact, k, would not be uniquely defined in a 
given equilibrium state, since it would in principle depend on the actual path 
chosen in the P, T plane, when preparing the actual equilibrium state. This 
would also apply to the reaction rate, which is clearly untenable. 

It may therefore be assumed explicitly that k, is a state function of T and 
P at equilibrium. This is in accordance with the transition state theory of 
reaction rates (TST), according to which reactants and TS complexes are 
assumed to be in equilibrium, clearly a reasonable assumption at thermody- 
namic equilibrium [ 71. 

The exactness criteria for d In K and d In k, require that there be a 
relation between the partial derivatives of R with respect to T and P, 
respectively, under equilibrium conditions. This may be written as 

aRa hK aRa h-x 
dPdT=aT ap 

However, reactions are generally studied in non-equilibrium states, char- 
acterized by T, P and composition (x) as independent variables. In such 
cases the temperature of the system has no longer a clear meaning [7] (and 
this also holds in principle for the pressure). In thermodynamics [3, 81 the 
temperature of a reacting system in a non-equilibrium state is generally 
identified with that of the heat reservoir in thermal contact with the system, 
and mechanical equilibrium is assumed [3]. The thermodynamic functions 
can thus be defined as in the equilibrium case, but now they are merely 
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approximate descriptions of the reactive, non-equilibrium system. Thus the 
molar Gibbs function of a (reacting) mixture G, is a function of T, P and 
x as independent variables, and a differential change in G, dG, requires dT, 
dP and dx to be given explicitly. Similar remarks apply in principle to the 
Gibbs function of the transition state. 

Likewise, k, becomes in principle a function of T, P and x as free 
variables. It is believed to be a state function of these variables for the same 
reason as given in the equilibrium case above (where x is a dependent 
variable). The differential 

is accordingly exact. Thus d In k, cannot be considered as an exact differen- 
tial of T and P in the general case [4]. This is merely true at equilibrium 
(eqn. (9)), or when x is a constant, or (8 In k, /ax),, = 0 (preceding 
equation). The last condition is in principle an assumption (approximation). 
The differential of the reaction rate expression, containing concentration 
terms, is an exact differential of T and P only when equilibrium states are 
considered, i.e. when x is a dependent variable. 

Empirically, d In k, comes fairly close to being an exact differential of T 
and P in various cases [4]. This indicates merely that k, is relatively 
insensitive to changes in composition, not that d In k, is actually an exact _ 
differential of T and P. 

Similar results as obtained above, may be derived in terms of T, V and x 
as independent variables, instead of T, P and x. 

THE RATE CONSTANT ON THE MOLARITY SCALE 

(A) The rate constant may be put on either a mole fraction or a molarity 
basis. Thus, ignoring activity coefficients as a first approximation, we have 
at fixed T and P 

V -k,xix:'I =k,+z+c/+ t- (13) 

where 

UIk 
_ +’ dnilai 

-V dt > 

is the reaction rate [7] and ci the molar concentration; rc, comprises all 
molecular species on the left-hand side of the reaction equation as normally 
written, and n_ those on the right-hand side. From this we get the 
well-known relation at equilibrium 

k,,lk,_ = qcq (14) 

Using xi = ci/S c;, one obtains from eqn. ( 13) 
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!(i > 

I: 1% I 
kc, =k, Cci ’ 

323 

(15) 

Furthermore 

d Ink,, a Ink, 8 ln z Ci 

aT =p- a+ Clai\ aT * 
and 

8 In k,, d Ink, a In C ci 

ap -=dP- ai C Iail 
It 

The second terms on the right may be relatively small in general, because 
the various ci changes are of opposite sign. 

The right-hand side of eqn. (14) is not a thermodynamic equilibrium 
constant, unless the reaction is an ideal gas reaction (K, = ni(Yi~i)ai, yi = l), 
or a reaction in a diluted solution (K,, yi + 1, Z Ci + co, the pure solvent 
concentration), or the numbers of molecules on ‘either side of the reaction 
equation are equal in a thermodynamic ideal solution (K,J = 1). 

(B) Redefining k,, in the general case 

+u, =k+n,(.Lxi)‘ui’/P =k,+~+(~iciP’/B - (16) 

we obtain at equilibrium 

replacing eqn. (14). The rate constant ratios in (B) are thus equal to 
thermodynamic equilibrium constants in general, which is not true in (A), 
as noted. /I is a factor that may be a function of concentration [7]. It is 
assumed equal in the two rate expressions for simplicity. 

Simplifying, we obtain in general, using xi = c,/C ci 

kc+ = k,n, _ 

The formal relation between the two types of activity coefficient is 

,LLi = p* + RT 1nJxi = ~7 f RT In yici 

where ,uzF and ,D? are the chemical potentials of the ith species in the two 
standard states based on the mole fraction and molarity scale, respectively. 
These states, or f; and yi, have to be chosen. 

Thus, in general 

Ideal gas: f; and yi are constants. Choosing J; = yi( = l), eqn. ( 15) is 
recovered; k,, _ and + u+ are identical in (A) and (B), respectively. 
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Ideally diluted solution: J; and yi become constant as Xi -+ 0 for the solutes 
and hence unity for the solvent. Choosing these constants to be equal ( = l), 
and noting that C ci -+co, we obtain 

and k,, and + ok are equal in (A) and (B), respectively. 
Ideal solution: f; = constant ( = 1) in general. Choosing 

chemical potential of the pure component at the same T and 
we find 

yi = 1 c ci 
I i 

and 

,a? =,ue, the 
P in this case, 
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