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Abstract 

Falsification (smearing) of measured DSC curves is caused by heat conduction phenomena 
from the DSC and from the sample itself. In a previous paper in this series, an algorithm is 
given to desmear measured heat flow-rate curves on the basis of the theory of linear response. 
In the case of a sample with low thermal conductivity and small changes of the material 
properties, the Green’s function can be estimated from the measured curve itself. These 
conditions are valid for the glass transition process of polymers and one can obtain the 
Green’s function for desmearing the DSC curves of this process from the glassy state or from 
the liquid state respectively. But every change of material properties during the thermal event 
causes an error in the desmearing procedure. This error can be evaluated from a model 
calculation. 
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1. Introduction 

In calorimetric investigations by means of the dynamic DSC method, the 
thermodynamic functions of the sample the (the change of enthalpy (dH/dt)( T), 
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the heat capacity C’(T)) are not identical to the measured curves. Systematic errors 
are caused by the falsification (smearing) of the measured curve due to heat transfer 
relaxation processes inside the sample and also in the DSC furnace. 

In the first of this series of papers [ 11, it was shown that in a discussion of 
smearing, one has to distinguish between 
(i) transitions ,with large changes of material properties, e.g. first-order phase 

transitions; 
(ii) transitions without latent heat and with small changes of material properties in 

substances with low thermal conductivity, e.g. the glass transition in polymers. 
In this paper we restrict ourselves to the second case. The aim is to evaluate the 

maximum error of our result if we desmear a measured curve with the aid of the 
“step-response Green’s function” [l] which can easily be obtained from the re- 
sponse of the measured heat flow rate curve on switching on and off the heating 
power (starting and stopping the dynamic operation mode). 

A simple algorithm to correct the error of smearing in the case of a simple 
one-furnace calorimeter was introduced elsewhere [2]. These studies were improved 
in Part 2 of this series of papers [3] for a real two-furnace power-compensated DSC. 

This correction was made with the aid of the theory of linear response. Thus the 
measured heat flow rate Q,,,(t) is the convolution product of the Green’s function 
G(f) with the true heat flow rate I”, which is connected to the process within the 
sample 

s f @‘,,t(t) = G(t - ~)cI+~(z) dr (la) 
0 

or abbreviated 

@out(t) = G(t) * @i,(t) (lb) 

where fin is the unsmeared heat flow rate, i.e. the heat flow rate into an ideal, 
infinitely thin, ideally thermally coupled sample in an ideal heat-conducting DSC. 
The Green’s function G(t) includes the transfer characteristics of both the DSC and 
of the sample. 

There are two reasons for the smearing of the signal from the sample. One is the 
finite heat resistance between sample and heater; the other is the temperature profile 
within the sample. Due to the temperature profile, the thermal event does not take 
place in the whole sample at one moment, but at different times in different regions 
of the sample. 

The temperature profile builds up after switching from isothermal conditions to 
temperature scan, and it vanished again when the heating rate changes to zero at 
the end of the scan. 

During a run with constant heating rate and in the absence of any thermal event, 
i.e. no change of material properties, there is a parabolic-shaped temperature profile 
within the sample which does not change with temperature but is shifted along the 
temperature axis [4]. 

Switching the scan rate jI on or off results in a step-like change of the heat flow 
rate min into the measuring system because min = C,p, where C, is the heat capacity 
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of the sample and B the heating rate. Thus the step-response Green’s function G,, 
of the sample-DSC system can be extracted from the relaxation behaviour of the 
measured curve at the start or at the end of the scan. It includes both the smearing 
due to heat transport and the developing of the temperature profile inside the 
sample. 

The exact desmearing of measured curves, including thermal events, by solution 
of the convolution integral (Eq. (1)) is also possible if 
(i) the Green’s function is determined from the switch behaviour of the sample in 

question; and 
(ii) the material properties (specific heat capacity cP, density p, and thermal 

conductivity 2) do not change, and the heat resistance between sample and 
heater also remains constant. 

In reality, every thermal event within the sample is coupled to changes of material 
properties which cause a change of the temperature profile [4]. This leads to an 
additional falsification of the measured signal and a faulty result if we desmear the 
measured curve with the step-response Green’s function. We shall discuss this and 
evaluate the error in question in the case of a glass transition. The evaluation will 
be made by means of model calculations. The changes of material properties during 
glass transition are rather small and well known. 

As we have little knowledge about the change in the coefficient of heat transfer 
to the sample at the glass transition, i.e. the thermal contact between pan and 
sample in the glassy state and the liquid state respectively, this effect will not be 
considered in the following calculations. 

2. Description of the model 

As described above, the step-response Green’s function to desmear a DSC curve 
can be extracted from both the switch-on and switch-off behaviour of the measured 
curve. To determine it, the measured heat flow rate curve must be deconvoluted 
with a characteristic step-like function s(t). The result is the searched Green’s 
function G,,(t). The characteristic function is 

S(t) = @(t - t,)c,(T(OP% (2) 

where 0 is the so-called step function which switches from zero to one at t,, cP the 
specific heat capacity, m, the sample mass, and j3 the scan rate. If G,,(t) is estimated 
from the switch-on step, the temperature dependence of cP (slope) must be 
considered in s(t), in contrast to the switch-off step leading to isothermal conditions 
(horizontal line). 

The Green’s function obtained in this way is only valid for the material 
properties at the time of switching. In the case of heating curves, the properties in 
question are those of the glass at switch-on and those of the liquid at switch-off. As 
the material properties change during the glass transition, none of these Green’s 
functions is exactly valid for desmearing this region of the curve. 
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Fig. 1. One-dimensional model of a homogeneous heat conductor of thickness L (@, heat flow rate). A, 

adiabatically isolated on the top; B, with a thermal event at the top. 

To determine how large this error can be, we compare the curve of a hypothet- 
ical glass transition with that obtained if we smear the model function with the 
step-response Green’s function of the liquid state (from the switch-off) and then 
desmear it with the Green’s function of the glassy state (from switch-on). There are 
reasons to believe that this comparison yields the maximum error, as the glass 
transition properties fall between the glassy and liquid ones and the true desmeared 
curve must be in between that desmeared with the switch-on Green’s function and 
that desmeared with the switch-off Green’s function. 

The model we use is one-dimensional. 
The sample is approximated by a homogeneous heat conducting rod of length 

L. During a temperature scan with heating rate j3, there is a constant heat flow 
rate @ = mcJ? into the bottom of the sample. In the absence of any thermal event, 
the heat conductor is throught to be adiabatically isolated at the top (Fig. 1) 

[41. 
In reality during a scan, the sample is indeed heated from all sides leading to the 

adiabatically isolated range being somewhere inside the sample [5]. Such a real 
sample may be described approximately as a connection of two one-dimensional 
heat conductors. 

The evaluation is calculated for a model polystyrene whose properties are given 
in Table 1. 

Table 1 

Material properties of the model polystyrene 

Property Glassy state Liquid state Remarks 

c,/(J g-’ K-‘) 1.6 2.0 

n/(W mK-r) 0.11 0.12 

pl(g cm-? 1.036 1.026 

a/(s mmm2) 15.07 17.09 

Own measurement 

Approximated from values at 

50 and 100°C [6] 

Approximated from 
values in Ref. [7] 

Calculated from values above 
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3. Error estimation 

3. I. The temperature profile change 

For the one-dimensional model sample (Fig. l), the temperature profile reads 

T(z,t) = T,, + /3t - c+Lz + 

with 

x2 = (2n + ‘jzn2 and u = 3 
n 41XL2 I. 

(p is density, cP specific heat capacity, and il thermal conductivity), assuming 
constant scan rate fi and no thermal event, with TO being the start temperature of 
the scan [4]. 

After relaxation of the switching-on processes, the third term disappears and a 
parabolic temperature profile is developed inside the sample 

T(z,t) = TO + j?t - a/?Lz 
( ) 

1 - & (4) 

In Fig. 2 the calculated temperature profiles of the glassy state and of the liquid 
state are shown for the case of the hypothetical polystyrene sample with a thickness 
of 1 mm at a heating rate of 20 K min-‘. 

The temperature difference between the bottom and adiabatically isolated top of 
the sample is 2.5 K in the glassy state. It increases during the glass transition by 

z I mm 
Fig. 2. Calculated temperature profiles of a 1 mm thick polystyrene sample (adiabatically isolated on the 

top), heating rate b = 20 K min-‘: curve 1, glassy state; curve 2, liquid state. 
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0.3-2.8 K in the liquid state. The reason for this is the change of the material 
property CL. 

In reality, during the glass transition, profile 1 slowly turns into profile 2. For 
simplicity, an abrupt change is used in our calculation, representing the worst case 
for error estimation. 

This change of CI can be simulated by switching on an additional heat flow (as 
from a thermal event). This heat flow rate (I+, is thought to derive exclusively from 
the top of the sample (Fig. 1) to obtain the maximal length of the heat conduction 
paths and, thus, the maximal additional smearing. 

It changes the temperature profile from that of the glassy state to the larger 
profile of the liquid state, only if a,, leaves the sample at the top. Q, is evaluated 
from Fourier’s law 

where A and AT denote the cross sectional area and the temperature difference in 
question. The heat flow rate into a 20 mg sample at a heating rate of 20 K min-’ 
is about 0.8 mW. 

With an additional heat flow rate 0 on the top of the sample, the temperature 
profile [4] changes to 

T(z,t) = To + br - c$Lz 

I 
e-x? (I- “)@(L,t’) dt’ (6) 

To obtain the temperature profile for our case, Q(t) has to be substituted by the step 
function of intensity m. at time t = 0 and z = L. From Eq. (6) we obtain 

T(z,t) = T,+bt -ctzLfi 1 -& -$ 
( > 

In Fig. 3, the stationary temperature profile (after such a time that the last term of 
Eq. (7) vanishes) is shown in addition to those of Fig. 2. 

It can be seen that the temperature profile of the liquid state and that of the 
glassy state with a constant additional heat flow rate of a0 = 0.8 mW from the top 
are nearly the same in our approximation. This result is the basis of the following 
simulation of the glass transition, with a thermal event on the top of the sample 
(with the heat flow leaving the sample) and the sample bulk serving for heat 
transport only (without additional transition). 

Both a step-function 

aqL,t) = aJo@ (8) 
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Z I mm 

Fig. 3. Calculated temperature profiles of 1 mm thick polystyrene sample, heating rate p = 20 K min-‘. 

Curves 1 and 2, from Fig. 2. Curve 3, in glassy state (same as 1) but with an additional constant heat 

flow rate of 0.8 mW out of the top of the sample. 

and a ramp 

c 0 if t-c0 

AT 
ifOSt<-- 

B 
AT 

if tT-- 
B 

are used as model functions to simulate the real heat flow of a glass transition (Fig. 
4). In the second case, the maximal heat flow out of the sample is obtained after the 
rise time AT//?, where AT characterizes the width of the glass transition interval. 

I I 
t=o t= AT/p 

Time 

Fig. 4. Representation of the functions @(L,t), the additional heat flow rate out of the top of the sample 
to simulate a glass transition: 1, step function; 2, ramp function. 
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For times larger than the rise time, the additional heat flow is assumed to be 
constant. 

In the following, the temperature profile will be estimated for both model 
functions. The thermal event is taken to start at t = 0, a time large enough after the 
scan switch-on (start of measurement) to obtain stationary conditions. Eq. (6) then 
describes the temperature profile after the thermal event 0(&t). 

The solution for a step function CD (Eq. (8)) is given by Eq. (7). 
If Q(L,t) is a ramp function, two different time intervals must be considered to 

solve the convolution integral in Eq. (6): 
(i) for time t < AT//? we get 

s f “op e-“: (1 -“‘@(t’) dt’ = LiT e-“f f ’ fe”; 1’ dt’ 

0 s 0 

(ii) for time t 2 At//? we get 

s f ,-&-f’@(f) dt’ = Qoe-“i’ 
0 

(11) 

With this result the temperature profile of our model can be calculated 

T(z,t) = 

x f cos((b + ‘)% -t))C _&, _e-4’)> AT 
(2n + 1>2 Xi 

ifO<t<- 
?I=0 P 

- x;:LyT 
(12) 

x ~ cos((2~‘1)2(1-t))~T :i( -i2~i-AT,d)_e-l:i)) ift2~ _--_e n 
?Z=O (2n + 1)2 P P 
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3.2. The measured signal 

In the considered model, the heat flow rate at the bottom of the sample is that 
which would be measured with the DSC. This heat flow rate can be estimated by 
inserting the calculated temperature profile into Fourier’s law 

In the first case, the thermal event is represented by a step function 

(13) 

(14) 

In the second case of (D(L,t) being a ramp function, the solution is 

@OP 
mc/3 +- 

AT 

rcAT 
ifOIt<- 

cD(O,t) = 
B 

mcfl +(I),- 
16@oc@2 m 

n3AT 
1 (-1)” (e-x;(‘-AT/B) _ e-x;t 

> 

AT 

n=O (2n + 1)3 
ift%--- 

B 

In Eqs. ( 14) and ( 15), the first term of the sum describes the steady state heat flow 
rate for linear heating without any thermal event. The second term is the heat flow 
rate which is switched on at the top of the sample (to simulate a thermal event). 
The smearing due to the heat transport inside the sample is given by the third term. 
This term vanishes for large times (steady state). 

For a model sample (polystyrene) with a thickness of 1 mm, the heat flow rate 
into the bottom of the sample can be calculated both with the aid of Eq. (14) or, 
better, with Eq. ( 15). This additional heat flow rate caused by the simulated thermal 
event of Q&t), is plotted in Fig. 5 for ramp widths of AT = 0, 5, 10, and 20 K 
respectively. The heating rate is always 20 K min-‘. 

Similar heat flow rates into a sample with a reduced thickness of half a millimeter 
are shown in Fig. 6. This case equals a sample of 1 mm thickness thought to be 
identically heated both from the bottom and the top of the pan. An adiabatic layer 
thus arises in the middle of the sample. In this layer, the described thermal event to 
simulate a glass transition will now take place. This case is closer to reality than the 
former one. But in reality the power through the lid of the pan is always smaller 
than the power through the bottom, leading to an adiabatic layer at about 2/3 of 
the thickness of the sample [5]. To estimate the maximum error, the first case 
should be considered. The results for a reduced thickness of the sample are given 
for the sake of comparison. 

From Figs. 5 and 6, a “glass transition time” can be estimated. This is the time 
when the measured heat flow rate curve reaches one half of the step height. 
(Usually the “glass rate temperature” is that temperature at which the heat capacity 
change is half of the total change.) Comparing the true ramp change with the 
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Fig. 5. The calculated additional heat flow rates @(O,t) on the bottom of the sample (thick lines), caused 

by a hypothetical additional heat flow @(L,t) (thermal event) on the top of the sample (thin lines). Ramp 

width: curve 1, AT = 0 K; curve 2, AT = 5 K; curve 3, AT = 10 K; curve 4, AT = 20 K (heating rate 

p = 20 K min-‘). Curves (a) are calculated with the material properties of the glassy state and curves 

(b) with those of the liquid state. 

Fig. 6. Curves from Fig. 5 but calculated for a sample of half thickness: curve 1, AT = 0 K; curve 2, 

AT = 5 K; T,,, = t,,& 

calculated curves, we find that the smearing effect is smaller in the glassy state than 
in the liquid state. 

The time difference At,, of 0.75 s corresponds (at a heating rate of 20 K min-’ 
(see Fig. 5)) to a temperature difference of the “glass transition temperature” of 
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Table 2 

Difference between the half-step temperatures, AT,,, = T,,Z,m - T,,2,i, of measured and “true” curves in 

the glassy state (AT,,, in the liquid state is 0.25 K higher) 

Sample thickness Width of transition ramp 

AT/K 
Calculated error 

AT&K 

1 mm 0 1.73 
5 2.23 

10 2.50 

20 2.50 

0.5 mm 0 0.47 

5 0.60 

0.25 K. In the case of the reduced effective thickness (Fig. 6) this difference is only 
0.07 K. 

If we compare the calculated “measured curve” with the real one (the ramp in 
question) at half-step-height, we find smearing times At,,z which depend on experi- 
mental parameters (width of ramp, sample thickness, heating rate; see Figs. 5 and 
6). From these times, the respective temperature differences ATl,2 can be calculated. 
Table 2 presents the results for the cases of Figs. 5 and 6. This AT,,2 represents the 
error of the dynamic determination of the glass transition temperature in the case 
of our model polystyrene sample. As can be seen, this error is mostly determined by 
the general smearing effect of thermal conductivity of the sample, where the change 
of the material properties has an influence, which is one order of magnitude smaller. 

With increasing width of the ramp, we calculate a larger AT,,,. For better 
interpretation, of this result we discuss the difference between the “true signal” 
@(L,t) and the corresponding “measured signal” @(O,t). In the case of t < AT/p 
(the time when the steady state value of the heat flow rate Q0 has not yet been 
reached, see Fig. 4), this difference A@ can be calculated from Eqs. (9) and ( 15) to 
be 

A@(t) = (16) 

After disappearance of the relaxation term (which is only relevant at the very 
beginning of the time interval in question), a constant, time-independent difference 
of this heat flow rate remains (see Fig. 6) 

(17) 

As, in the example, the real heat flow rate at the top (D(L,t) increases linearly with 
a slope (Fig. 4) 

A@ %B __=~ 
At AT 
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the delay in time between @(O,t) and cD(L,t) (with observance of Eq. ( 17)) reads 

From this we calculate the difference in the half-step temperatures using the 
definition of the heating rate B = AT/At 

AT,,2 = T,,~,rn - T1/2,i = ~ p (19) 

As can be seen, the temperature error of the measurement, which is caused by the 
smearing effect of the sample, is, apart from the heating rate, dependent on the 
sample properties. This temperature error is independent of the slope of 0. 

The temperature error according to Eq. (19) arises after the disappearance of the 
relaxation term. For the model sample in question, these temperature errors are 
2.51 and 2.85 K for the glassy state and the liquid state respectively (at half-sample 
thickness, they reduce to 0.63 and 0.71 K). 

3.3. The step-response Green’s function 

In this section the maximum error of faulty desmearing caused by the change of 
the material quantity CI during glass transition will be estimated. 

As mentioned above, the necessary Green’s function can be determined from the 
response of the heat flow rate curve on switching on or off the temperature scan 
(the step-response Green’s function G,,). In the first case, G,,(t) contains the heat 
transport properties of the glass. In the other case, it includes the corresponding 
properties of the liquid. 

For a discussion of the maximum error estimation, the smeared measured signal 
due to a hypothetical thermal event in the liquid state will be desmeared by means 
of the Green’s function of the glassy state. 

The change of the heat flow rate at the bottom of the sample, which is caused by 
an additional heat flow rate Q(U) at the top of the sample, reads in Laplace space 

PI 

$(W = 1 
cosh&L 

d4w (20) 

where s corresponds to time t and the convolution product transforms into a simple 
multiplication, the fraction being the Green’s function in Laplace space. 

If the true heat flow rate of a thermal event is smeared by the Green’s function 
of the liquid state and desmeared by means of the step-response Green’s function 
of the glassy state, then we get (at a worst case) the (incorrect) heat flow rate 

4d(W = 
cosh&L 

cosh&L 
4(LP) (21) 

where CL, and CI~ are the reciprocal thermal diffusivities of the glassy and the liquid 
state, respectively. This equation describes in Laplace space the connection between 
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the real event at the top of the sample &C,s) and the wrongly desmeared heat flow 
rate curve at the bottom of the sample cJ~(O,S). The fraction determines the Green’s 
function which causes this error in Laplace space (it should be unity in an error-free 
case). 

The corresponding Green’s function in time space is calculated by means of an 
inverse Laplace transformation from Eq. (21) 

1 
=- 

s 

c + im coshJor,sL 

2rci c-im cosh&L 
es’ ds (22) 

The complex integral in Eq. (22) is evaluated by determining the residuals of the 
integrand. In time space we get 

(23) 

And the incorrect desmeared heat flow rate curve cD,(O,t) can be determined by 
convolution of the hypothetical heat flow rate due to a thermal event @(L,t) with 
the incorrect Green’s function Gd(t) 

@‘d(t) = Qd(O,f) = 
s 

f 
Gd(t - t’)@(L,t’) dt’ (24) 

0 

Inserting Eqs. ( 14) and (15) into Eq. (24) we get: 
(i) for a step-like thermal event 

@)d(t) =mc/?+@,i z K 
II-0 

COS(Jj~li)o -e-x~r) (25) 

and 
(ii) with a ramp-like event (of the width AT) 

@dct) = 

4u, L2 
(2n + 1)2712 (e-X~(r-ATIB) -e 

The results from Eqs. (25) and (26) are shown in Figs. 7 and 8. 
A measure for the error of the determined glass transition temperature from the 

faulty desmeared measured curve is the difference in the half-step temperatures Tl,2 
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0.0 
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Fig. 7. Simulated thermal event of different ramp width (thin lines) and calculated corresponding 

desmeared heat flow rates, curves (a), where the measured heat flow rate curve from the liquid model 

polystyrene has been desmeared with the aid of the step-response Green’s function of the glassy state. 

Ramp width: curve 1, AT = 0 K; curve 2, AT = 5 K; curve 3, AT = 10 K; curve 4, AT = 20 K. 

3.0 

0.0 

t I s 

Fig. 8. Curves as in Fig. 7 but at reduced sample thickness, T,,, = t,,,/?. 

between the input heat flow rate Q(L,t) and the above calculated incorrect heat flow 
rate ad (t). These differences are presented in Table 3. 

As can be seen, the errors in TI12 after desmearing by means of an incorrect 

step-response Green’s function equal the differences between the half-step tempera- 
tures of the smeared curve from the glassy state and from the liquid state (Fig. 5). 
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Table 3 
Differences between half-step temperature T,,2 of the input heat flow rate (Q&t)) and that of the 

desmeared heat flow rate (ad(t)), AT,,, = T,,Z,d - T,,2,i 

Sample thickness Width of transition ramp 

AT/K 

Calculated error 

AT&K 

1 mm 0 0.16 

5 0.23 

10 0.25 

20 0.25 

0.5 mm 0 0.03 

5 0.06 

The maximum temperature error of the desmeared curves, when neglecting the 
change of Green’s function due to the material properties during glass transition, is 
thus about 0.25 K. This error is about one order of magnitude lower than the total 
temperature error if we do not desmear the measured curves (Fig. 5). 

As our model is only a rough upper-limit approximation (rather unfavorable 
concerning heat transport), smaller values can be expected in reality (like the results 
for reduced sample thickness). 

Comparison of Fig. 5 with Fig. 7, and Fig. 6 with Fig. 8 shows that the heat flow 
rate curves desmeared with the aid a, of a slightly incorrect step-response Green’s 
function yield, however, a better approximation of the real thermal event than the 
measured curves do. 

4. Conclusions 

Faultless desmearing (deconvolution) of measured curves is only possible if the 
Green’s function is determined with the sample being in place and having the same 
material properties as during the measurement. 

We have shown by model calculations that in the case of small changes of 
material properties (as during a glass transition), the error of using the Green’s 
function determined with one set of material properties for desmearing a curve 
measured with the other set of material properties is within the order of magnitude 
of the measuring error. 

As a result, it should be possible to desmear a glass transition curve with either 
the Green’s function obtained with the sample in the glassy state or that obtained 
with the sample in the liquid state. 

These two (somewhat different) Green’s functions can easily be determined from 
the step-response behaviour on switching on and off the heating or cooling from 
isothermal model. 

Thus the “step-response Green’s function” can be used to desmear measured 
curves, if the material properties do not change more than in the case of glass 
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transitions. These theoretical evaluations will be proved experimentally in the next 
paper of this series. 
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